Tumor-Associated Inflammatory Cells in Thyroid Carcinomas

Published:October 01, 2014DOI:https://doi.org/10.1016/j.path.2014.08.006

      Abstract

      The complex interactions between immune cells and tumor cells in cancer play a major role in tumor development and subsequent patient outcomes. Different types of tumor-associated inflammatory cells (TAICs), such as dendritic cells, macrophages, lymphocytes, and mast cells, have been recognized for many years in several tumors; however, the role of TAICs in cancer is still not completely understood. This review article focuses on the major types of TAICs, including their general role in cancer and, more specifically, their role and distribution in thyrocyte-derived carcinomas.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Virchow R. Die Krankhaften Geschwulste. Verlag von August Hirschwald; Berlin: 1863. Aetologie der neoplastichen Geschwulste/Pathogenie der neoplastischen Geschwulste. p. 57–101.

        • Di Pasquale M.
        • Rothstein J.L.
        • Palazzo J.P.
        Pathologic features of Hashimoto's-associated papillary thyroid carcinomas.
        Hum Pathol. 2001; 32: 24-30
        • Ott R.A.
        • McCall A.R.
        • McHenry C.
        • et al.
        The incidence of thyroid carcinoma in Hashimoto’s thyroiditis.
        Am Surg. 1987; 53: 442-445
        • Okayasu I.
        • Fujiwara M.
        • Hara Y.
        • et al.
        Association of chronic lymphocytic thyroiditis and thyroid papillary carcinoma. A study of surgical cases among Japanese, and white and African Americans.
        Cancer. 1995; 76: 2312-2318
        • Germano G.
        • Allavena P.
        • Mantovani A.
        Cytokines as a key component of cancer-related inflammation.
        Cytokine. 2008; 43: 374-379
        • Scarpino S.
        • Stoppacciaro A.
        • Ballerini F.
        • et al.
        Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells.
        Am J Pathol. 2000; 156: 831-837
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674
        • Penn I.
        Depressed immunity and the development of cancer.
        Cancer Detect Prev. 1994; 18: 241-252
        • Rothwell P.M.
        • Price J.F.
        • Fowkes F.G.
        • et al.
        Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials.
        Lancet. 2012; 379: 1602-1612
        • Hart D.N.
        Dendritic cells: unique leukocyte populations which control the primary immune response.
        Blood. 1997; 90: 3245-3287
        • Theoharides T.C.
        • Conti P.
        Mast cells: the Jekyll and Hyde of tumor growth.
        Trends Immunol. 2004; 25: 235-241
        • Ryder M.
        • Ghossein R.A.
        • Ricarte-Filho J.C.
        • et al.
        Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer.
        Endocr Relat Cancer. 2008; 15: 1069-1074
        • Karthaus N.
        • Torensma R.
        • Tel J.
        Deciphering the message broadcast by tumor-infiltrating dendritic cells.
        Am J Pathol. 2012; 181: 733-742
        • Mantovani A.
        • Schioppa T.
        • Porta C.
        • et al.
        Role of tumor-associated macrophages in tumor progression and invasion.
        Cancer Metastasis Rev. 2006; 25: 315-322
        • Gogali F.
        • Paterakis G.
        • Rassidakis G.Z.
        • et al.
        Phenotypical analysis of lymphocytes with suppressive and regulatory properties (Tregs) and NK cells in the papillary carcinoma of thyroid.
        J Clin Endocrinol Metab. 2012; 97: 1474-1482
        • French J.D.
        • Weber Z.J.
        • Fretwell D.L.
        • et al.
        Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer.
        J Clin Endocrinol Metab. 2010; 95: 2325-2333
        • Pinzon-Charry A.
        • Maxwell T.
        • Lopez J.A.
        Dendritic cell dysfunction in cancer: a mechanism for immunosuppression.
        Immunol Cell Biol. 2005; 83: 451-461
        • Vicari A.P.
        • Caux C.
        • Trinchieri G.
        Tumour escape from immune surveillance through dendritic cell inactivation.
        Semin Cancer Biol. 2002; 12: 33-42
        • Kimura E.T.
        • Nikiforova M.N.
        • Zhu Z.
        • et al.
        High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
        Cancer Res. 2003; 63: 1454-1457
        • Muzza M.
        • Degl’Innocenti D.
        • Colombo C.
        • et al.
        The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies.
        Clin Endocrinol (Oxf). 2010; 72: 702-708
        • Guarino V.
        • Castellone M.D.
        • Avilla E.
        • et al.
        Thyroid cancer and inflammation.
        Mol Cell Endocrinol. 2010; 321: 94-102
        • Borrello M.G.
        • Alberti L.
        • Fischer A.
        • et al.
        Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene.
        Proc Natl Acad Sci U S A. 2005; 102: 14825-14830
        • Russel J.P.
        • Shinohara S.
        • Melillo R.M.
        • et al.
        Tyrosine kinase oncoprotein, RET/PTC3, induces the secretion of myeloid growth and chemotactic factors.
        Oncogene. 2003; 22: 4569-4577
        • Puxeddu E.
        • Knauf J.A.
        • Sartor M.A.
        • et al.
        RET/PTC induced gene expression in thyroid PCCL3 cells reveals early activation of genes involved in regulation of the immune response.
        Endocr Relat Cancer. 2005; 12: 319-334
        • Melillo R.M.
        • Castellone M.D.
        • Guarino V.
        • et al.
        The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells.
        J Clin Invest. 2005; 115: 1068-1081
        • Castellone M.D.
        • Guarino V.
        • De Falco V.
        • et al.
        Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas.
        Oncogene. 2004; 23: 5958-5967
        • Zong Y.S.
        • Zhang C.Q.
        • Zhang F.
        • et al.
        Infiltrating lymphocytes and accessory cells in nasopharyngeal carcinoma.
        Jpn J Cancer Res. 1993; 84: 900-905
        • Hadrup S.R.
        • Braendstrup O.
        • Jacobsen G.K.
        • et al.
        Tumor infiltrating lymphocytes in semi-noma lesions comprise clonally expanded cytotoxic T cells.
        Int J Cancer. 2006; 119: 831-838
        • Caillou B.
        • Talbot M.
        • Weyemi U.
        • et al.
        Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma.
        PLoS One. 2011; 6: e22567
        • Solinas G.
        • Germano G.
        • Mantovani A.
        • et al.
        Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation.
        J Leukoc Biol. 2009; 86: 1065-1073
        • Pusztaszeri M.P.
        • Sadow P.M.
        • Faquin W.C.
        Association of CD1a-positive dendritic cells with papillary thyroid carcinoma in thyroid fine-needle aspirations: a cytologic and immunocytochemical evaluation.
        Cancer Cytopathol. 2013; 121: 206-213
        • Finak G.
        • Bertos N.
        • Pepin F.
        • et al.
        Stromal gene expression predicts clinical outcome in breast cancer.
        Nat Med. 2008; 14: 518-527
        • Cella M.
        • Sallusto F.
        • Lanzavecchia A.
        Origin, maturation and antigen presenting function of dendritic cells.
        Curr Opin Immunol. 1997; 9: 10-16
        • Bell D.
        • Chomarat P.
        • Broyles D.
        • et al.
        In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas.
        J Exp Med. 1999; 190: 1417-1426
        • Banchereau J.
        • Steinman R.M.
        Dendritic cells and control of immunity.
        Nature. 1998; 392: 245-252
        • Tsuge K.
        • Takeda H.
        • Kawada S.
        • et al.
        Characterization of dendritic cells in differentiated thyroid cancer.
        J Pathol. 2005; 205: 565-576
        • Greaves D.R.
        • Wang W.
        • Dairaghi D.J.
        • et al.
        CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3 alpha and is highly expressed in human dendritic cells.
        J Exp Med. 1997; 186: 837-844
        • Talmadge J.E.
        • Donkor M.
        • Scholar E.
        Inflammatory cell infiltration of tumors: Jekyll or Hyde.
        Cancer Metastasis Rev. 2007; 26: 373-400
        • Leskela S.
        • Rodríguez-Muñoz A.
        • de la Fuente H.
        • et al.
        Plasmacytoid dendritic cells in patients with autoimmune thyroid disease.
        J Clin Endocrinol Metab. 2013; 98: 2822-2833
        • Yu H.
        • Huang X.
        • Liu X.
        • et al.
        Regulatory T cells and plasmacytoid dendritic cells contribute to the immune escape of papillary thyroid cancer coexisting with multinodular non-toxic goiter.
        Endocrine. 2013; 44: 172-181
        • Ma Y.
        • Shurin G.V.
        • Peiyuan Z.
        • et al.
        Dendritic cells in the cancer microenvironment.
        J Cancer. 2013; 4: 36-44
        • Hanke N.
        • Alizadeh D.
        • Katsanis E.
        • et al.
        Dendritic cell tumor killing activity and its potential applications in cancer immunotherapy.
        Crit Rev Immunol. 2013; 33: 1-21
        • Sandel M.H.
        • Dadabayev A.R.
        • Menon A.G.
        • et al.
        Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization.
        Clin Cancer Res. 2005; 11: 2576-2582
        • Schröder S.
        • Schwarz W.
        • Rehpenning W.
        • et al.
        Dendritic/Langerhans cells and prognosis in patients with papillary thyroid carcinomas. Immunocytochemical study of 106 thyroid neoplasms correlated to follow-up data.
        Am J Clin Pathol. 1988; 89: 295-300
        • Hilly O.
        • Koren R.
        • Raz R.
        • et al.
        The role of s100-positive dendritic cells in the prognosis of papillary thyroid carcinoma.
        Am J Clin Pathol. 2013; 139: 87-92
        • Gabrilovich D.
        Mechanisms and functional significance of tumour induced dendritic cell defects.
        Nat Rev Immunol. 2004; 4: 941-952
        • Enk A.H.
        • Jonuleit H.
        • Saloga J.
        • et al.
        Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma.
        Int J Cancer. 1997; 73: 309-316
        • Yamakawa M.
        • Kato H.
        • Takagi S.
        • et al.
        Dendritic cells in various human thyroid diseases.
        In Vivo. 1993; 7: 249-256
        • Kabel P.J.
        • Voorbij H.A.
        • De Haan M.
        • et al.
        Intrathyroidal dendritic cells.
        Clin Endocrinol Metab. 1988; 66: 199-207
        • Proietti A.
        • Ugolini C.
        • Melillo R.M.
        • et al.
        Higher intratumoral expression of CD1a, tryptase, and CD68 in a follicular variant of papillary thyroid carcinoma compared to adenomas: correlation with clinical and pathological parameters.
        Thyroid. 2011; 21: 1209-1215
        • McLaren K.M.
        • Cossar D.W.
        The immunohistochemical localization of S100 in the diagnosis of papillary carcinoma of the thyroid.
        Hum Pathol. 1996; 27: 633-636
        • Xu W.
        • Li X.
        • Chen S.
        • et al.
        Expression and distribution of S-100, CD83 and apoptosis-related proteins (Fas, FasL and Bcl-2) in tissues of thyroid carcinoma.
        Eur J Histochem. 2008; 52: 153-162
        • Ugolini C.
        • Basolo F.
        • Proietti A.
        • et al.
        Lymphocyte and immature dendritic cell infiltrates in differentiated, poorly differentiated, and undifferentiated thyroid carcinoma.
        Thyroid. 2007; 17: 389-393
        • Yamakawa M.
        • Yamada K.
        • Orui H.
        • et al.
        Immunohistochemical analysis of dendritic/Langerhans cells in thyroid carcinomas.
        Anal Cell Pathol. 1995; 8: 331-343
        • Batistatou A.
        • Zolota V.
        • Scopa C.D.
        S-100 protein+ dendritic cells and CD34+ dendritic interstitial cells in thyroid lesions.
        Endocr Pathol. 2002; 13: 111-115
        • Fiumara A.
        • Belfiore A.
        • Russo G.
        • et al.
        In situ evidence of neoplastic cell phagocytosis by macrophages in papillary thyroid cancer.
        J Clin Endocrinol Metab. 1997; 82: 1615-1620
        • Khazaie K.
        • Blatner N.R.
        • Khan M.W.
        • et al.
        The significant role of mast cells in cancer.
        Cancer Metastasis Rev. 2011; 30: 45-60
        • Melillo R.M.
        • Guarino V.
        • Avilla E.
        • et al.
        Mast cells have a protumorigenic role in human thyroid cancer.
        Oncogene. 2010; 29: 6203-6215
        • Takanami I.
        • Takeuchi K.
        • Naruke M.
        Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma.
        Cancer. 2000; 88: 2686-2692
        • Pollard J.W.
        Trophic macrophages in development and disease.
        Nat Rev Immunol. 2009; 9: 259-270
        • Bingle L.
        • Brown N.J.
        • Lewis C.E.
        The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies.
        J Pathol. 2002; 196: 254-265
        • Zhang Q.W.
        • Liu L.
        • Gong C.Y.
        • et al.
        Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature.
        PLoS One. 2012; 7: e50946
        • Ugolini C.
        • Elisei R.
        • Proietti A.
        • et al.
        FoxP3 expression in papillary thyroid carcinoma: a possible resistance biomarker to iodine 131 treatment.
        Thyroid. 2014; 24: 339-346
        • Qing W.
        • Fang W.Y.
        • Ye L.
        • et al.
        Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma.
        Thyroid. 2012; 22: 905-910
        • Matsubayashi S.
        • Kawai K.
        • Matsumoto Y.
        • et al.
        The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland.
        J Clin Endocrinol Metab. 1995; 80: 3421-3424
        • Gooden M.J.
        • de Bock G.H.
        • Leffers N.
        • et al.
        The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis.
        Br J Cancer. 2011; 105: 93-103
        • Gupta S.
        • Patel A.
        • Folstad A.
        • et al.
        Infiltration of differentiated thyroid carcinoma by proliferating lymphocytes is associated with improved disease-free survival for children and young adults.
        J Clin Endocrinol Metab. 2001; 86: 1346-1354
        • Fehérvari Z.
        • Sakaguchi S.
        CD4+ Tregs and immune control.
        J Clin Invest. 2004; 114: 1209-1217
        • Zhou G.
        • Levitsky H.I.
        Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumour-specific tolerance.
        J Immunol. 2007; 178: 2155-2162
        • French J.D.
        • Kotnis G.R.
        • Said S.
        • et al.
        Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer.
        J Clin Endocrinol Metab. 2012; 97: E934-E943
        • Bates G.J.
        • Fox S.B.
        • Han C.
        • et al.
        Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse.
        J Clin Oncol. 2006; 24: 5373-5380
        • Gogali F.
        • Paterakis G.
        • Rassidakis G.Z.
        • et al.
        CD3-CD16-CD56bright immunoregulatory NK Cells are increased in the tumor microenvironment and inversely correlate with advanced stages in patients with papillary thyroid cancer.
        Thyroid. 2013; 23: 1561-1568
        • Liu J.
        • Singh B.
        • Tallini G.
        • et al.
        Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity.
        Cancer. 2006; 107: 1255-1264
        • Chang W.C.
        • Chen J.Y.
        • Lee C.H.
        • et al.
        Expression of decoy receptor 3 in diffuse sclerosing variant of papillary thyroid carcinoma: correlation with m2 macrophage differentiation and lymphatic invasion.
        Thyroid. 2013; 23: 720-726
        • Bongiovanni M.
        • Paone G.
        • Cariani L.
        • et al.
        Cellular and molecular basis for thyroid cancer imaging in nuclear medicine.
        Clin Transl Imaging. 2013; 1: 149-161
        • Grabellus F.
        • Nagarajah J.
        • Bockisch A.
        • et al.
        Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma.
        Clin Nucl Med. 2012; 37: 121-127
        • Schönberger J.
        • Rüschoff J.
        • Grimm D.
        • et al.
        Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study.
        Thyroid. 2002; 12: 747-754