Advertisement
Surgical Pathology Clinics

Molecular Taxonomy and Immune Checkpoint Therapy in Bladder Cancer

Published:October 12, 2022DOI:https://doi.org/10.1016/j.path.2022.07.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kamat A.M.
        • Hahn N.M.
        • Efstathiou J.A.
        • et al.
        Bladder cancer.
        Lancet. 2016; 388: 2796-2810
        • Grignon D.J.A.A.H.
        • Algaba F.
        • Amin M.B.
        • et al.
        Tumors of the urinary tract.
        4 ed. IARC Press, Lyon, France2016
        • Guo C.C.
        • Czerniak B.
        Bladder cancer in the genomic era.
        Arch Pathol Lab Med. 2019; 143: 695-704
        • Spiess P.E.
        • Czerniak B.
        Dual-track pathway of bladder carcinogenesis: practical implications.
        Arch Pathol Lab Med. 2006; 130: 844-852
        • Balar A.V.
        • Kamat A.M.
        • Kulkarni G.S.
        • et al.
        Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study.
        Lancet Oncol. 2021; 22: 919-930
        • Sharma P.
        • Retz M.
        • Siefker-Radtke A.
        • et al.
        Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial.
        Lancet Oncol. 2017; 18: 312-322
        • Damrauer J.S.
        • Hoadley K.A.
        • Chism D.D.
        • et al.
        Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology.
        Proc Natl Acad Sci U S A. 2014; 111: 3110-3115
        • Choi W.
        • Porten S.
        • Kim S.
        • et al.
        Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy.
        Cancer Cell. 2014; 25: 152-165
        • Robertson A.G.
        • Kim J.
        • Al-Ahmadie H.
        • et al.
        Comprehensive molecular characterization of muscle-invasive bladder cancer.
        . Cell. 2017; 171: 540-556 e525
        • Cancer Genome Atlas Research N.
        Comprehensive molecular characterization of urothelial bladder carcinoma.
        Nature. 2014; 507: 315-322
        • Majewski T.
        • Yao H.
        • Bondaruk J.
        • et al.
        Whole-organ genomic characterization of mucosal field effects initiating bladder carcinogenesis.
        Cell reports. 2019; 26: 2241-2256.e2244
        • Czerniak B.
        • Dinney C.
        • McConkey D.
        Origins of bladder cancer.
        Annu Rev Pathol. 2016; 11: 149-174
        • Kurzrock E.A.
        • Lieu D.K.
        • Degraffenried L.A.
        • et al.
        Label-retaining cells of the bladder: candidate urothelial stem cells.
        Am J Physiol Renal Physiol. 2008; 294: F1415-F1421
        • He X.
        • Marchionni L.
        • Hansel D.E.
        • et al.
        Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma.
        Stem Cells (Dayton, Ohio). 2009; 27: 1487-1495
        • Chan K.S.
        • Espinosa I.
        • Chao M.
        • et al.
        Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells.
        Proc Natl Acad Sci U S A. 2009; 106: 14016-14021
        • Brandt W.D.
        • Matsui W.
        • Rosenberg J.E.
        • et al.
        Urothelial carcinoma: stem cells on the edge.
        Cancer Metastasis Rev. 2009; 28: 291-304
        • Farsund T.
        Cell kinetics of mouse urinary bladder epithelium. II. Changes in proliferation and nuclear DNA content during necrosis regeneration, and hyperplasia caused by a single dose of cyclophosphamide.
        Virchows Arch B Cell Pathol. 1976; 21: 279-298
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • et al.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Koss L.G.
        • Tiamson E.M.
        • Robbins M.A.
        Mapping cancerous and precancerous bladder changes. A study of the urothelium in ten surgically removed bladders.
        JAMA. 1974; 227: 281-286
        • Czerniak B.H.F.
        Molecular biology of common genito-urinary tumors.
        in: LG K. Diagnostic cytology of the urinary tract with histopathologic and clinical correlation. Lippincott-Raven, Philadelphia, PA1995: 345-364
        • Zhang Z.T.
        • Pak J.
        • Huang H.Y.
        • et al.
        Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation.
        Oncogene. 2001; 20: 1973-1980
        • Mo L.
        • Zheng X.
        • Huang H.Y.
        • et al.
        Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis.
        J Clin Invest. 2007; 117: 314-325
        • Zhang Z.T.
        • Pak J.
        • Shapiro E.
        • et al.
        Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma.
        Cancer Res. 1999; 59: 3512-3517
        • Cheng J.
        • Huang H.
        • Pak J.
        • et al.
        Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder.
        Cancer Res. 2003; 63: 179-185
        • Bondaruk J.
        • Jaksik R.
        • Wang Z.
        • et al.
        The Origin of Bladder Cancer from Mucosal Field Effects.
        bioRxiv. 2021; (2021.2005.2012.443785)
        • Lindgren D.
        • Frigyesi A.
        • Gudjonsson S.
        • et al.
        Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome.
        Cancer research. 2010; 70: 3463-3472
        • Sjodahl G.
        • Lauss M.
        • Lovgren K.
        • et al.
        A molecular taxonomy for urothelial carcinoma.
        Clin Cancer Res. 2012; 18: 3377-3386
        • Hedegaard J.
        • Lamy P.
        • Nordentoft I.
        • et al.
        Comprehensive transcriptional analysis of early-stage urothelial carcinoma.
        Cancer Cell. 2016; 30: 27-42
        • Sjodahl G.
        • Lovgren K.
        • Lauss M.
        • et al.
        Toward a molecular pathologic classification of urothelial carcinoma.
        Am J Pathol. 2013; 183: 681-691
        • Jackson C.L.
        • Chen L.
        • Hardy C.S.
        • et al.
        Diagnostic and prognostic implications of a three-antibody molecular subtyping algorithm for non-muscle invasive bladder cancer.
        J Pathol Clin Res. 2021;
        • Dadhania V.
        • Zhang M.
        • Zhang L.
        • et al.
        Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use.
        EBioMedicine. 2016; 12: 105-117
        • Guo C.C.
        • Bondaruk J.
        • Yao H.
        • et al.
        Assessment of luminal and basal phenotypes in bladder cancer.
        Sci Rep. 2020; 10: 9743
        • Rebouissou S.
        • Bernard-Pierrot I.
        • de Reyniès A.
        • et al.
        EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype.
        Sci Transl Med. 2014; 6: 244ra291
        • Eriksson P.
        • Rovira C.
        • Liedberg F.
        • et al.
        A validation and extended description of the Lund taxonomy for urothelial carcinoma using the TCGA cohort.
        Scientific Reports. 2018; 8: 1-12
        • Mo Q.
        • Nikolos F.
        • Chen F.
        • et al.
        Prognostic power of a tumor differentiation gene signature for bladder urothelial carcinomas.
        J Natl Cancer Inst. 2018; 110: 448-459
        • Kamoun A.
        • de Reyniès A.
        • Allory Y.
        • et al.
        A consensus molecular classification of muscle-invasive bladder cancer.
        Eur Urol. 2020; 77: 420-433
        • Guo C.C.
        • Majewski T.
        • Zhang L.
        • et al.
        Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer.
        Cell reports. 2019; 27: 1781-1793.e1784
        • Guo C.C.
        • Dadhania V.
        • Zhang L.
        • et al.
        Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer.
        Eur Urol. 2016; 70: 611-620
        • Yang G.
        • Bondaruk J.
        • Cogdell D.
        • et al.
        Urothelial-to-neural plasticity drives progression to small cell bladder cancer.
        iScience. 2020; 23: 101201
        • Al-Ahmadie H.A.
        • Iyer G.
        • Lee B.H.
        • et al.
        Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer.
        Nat Genet. 2016; 48: 356-358
        • Fox M.D.
        • Xiao L.
        • Zhang M.
        • et al.
        Plasmacytoid urothelial carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical analysis of 49 cases.
        Am J Clin Pathol. 2017; 147: 500-506
        • Chang M.T.
        • Penson A.
        • Desai N.B.
        • et al.
        Small-cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis.
        Clin Cancer Res. 2018; 24: 1965-1973
        • Ribas A.
        • Wolchok J.D.
        Cancer immunotherapy using checkpoint blockade.
        Science. 2018; 359: 1350-1355
        • Lopez-Beltran A.
        • Cimadamore A.
        • Blanca A.
        • et al.
        Immune checkpoint inhibitors for the treatment of bladder cancer.
        Cancers (Basel). 2021; 13
        • Schulz G.B.
        • Todorova R.
        • Braunschweig T.
        • et al.
        PD-L1 expression in bladder cancer: which scoring algorithm in what tissue?.
        Urologic oncology. 2021; 39 (734.e731-734.e710)
        • Sharma P.
        • Allison J.P.
        Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential.
        Cell. 2015; 161: 205-214
        • Rijnders M.
        • de Wit R.
        • Boormans J.L.
        • et al.
        Systematic review of immune checkpoint inhibition in urological cancers.
        Eur Urol. 2017; 72: 411-423
        • Tang C.
        • Ma J.
        • Liu X.
        • Liu Z.
        Identification of four immune subtypes in bladder cancer based on immune gene sets.
        Front Oncol. 2020; 10: 544610
        • Seiler R.
        • Gibb E.A.
        • Wang N.Q.
        • et al.
        Divergent biological response to neoadjuvant chemotherapy in muscle-invasive bladder cancer.
        Clin Cancer Res. 2018;
        • De Simone M.
        • Arrigoni A.
        • Rossetti G.
        • et al.
        Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells.
        Immunity. 2016; 45: 1135-1147
        • Balar A.V.
        • Castellano D.
        • O'Donnell P.H.
        • et al.
        First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study.
        Lancet Oncol. 2017; 18: 1483-1492
        • Balar A.V.
        • Galsky M.D.
        • Rosenberg J.E.
        • et al.
        Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial.
        Lancet. 2017; 389: 67-76
        • Eckstein M.
        • Cimadamore A.
        • Hartmann A.
        • et al.
        PD-L1 assessment in urothelial carcinoma: a practical approach.
        Ann Transl Med. 2019; 7: 690
        • Samstein R.M.
        • Lee C.H.
        • Shoushtari A.N.
        • et al.
        Tumor mutational load predicts survival after immunotherapy across multiple cancer types.
        Nat Genet. 2019; 51: 202-206
        • Lemery S.
        • Keegan P.
        • Pazdur R.
        First FDA approval agnostic of cancer site - when a biomarker defines the indication.
        N Engl J Med. 2017; 377: 1409-1412
        • Majewski T.
        • Lee S.
        • Jeong J.
        • et al.
        Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy.
        Lab Invest. 2008; 88: 694-721
        • Sweis R.F.
        • Luke J.J.
        Mechanistic and pharmacologic insights on immune checkpoint inhibitors.
        Pharmacol Res. 2017; 120: 1-9

      Further readings

        • Robertson G, A.
        • et al.
        Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer.
        Cell. 2017; 171: 540-556
        • Eckstein M.
        • et al.
        Hartmann A, et al. PD-L1 assessment in urothelial carcinoma: a practical approach.
        Ann Transl Med. 2019;7(22):690. 2019; 7: 690https://doi.org/10.21037/atm.2019.10.24
        • Kamoun A.
        • et al.
        A Consensus Molecular Classification of Muscle-invasive Bladder Cancer 2020;77(4):420-433..
        Eur Urol. 2020; 77: 420-433
        • Bondaruk J.
        • et al.
        The origin of bladder cancer from mucosal field effects.
        iSceince. 2022; 25: 104551https://doi.org/10.1016/j.isci.2022.104551
        • Lindskrog S.V.
        • et al.
        An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer.
        Nat Commun. 2021; 12: 2301https://doi.org/10.1038/s41467-021-22465-w