Advertisement
Review Article| Volume 16, ISSUE 1, P57-73, March 2023

Download started.

Ok

This is Your Thyroid on Drugs

Targetable Mutations and Fusions in Thyroid Carcinoma
Published:December 10, 2022DOI:https://doi.org/10.1016/j.path.2022.09.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Megwalu U.C.
        • Moon P.K.
        Thyroid cancer incidence and mortality trends in the United States: 2000-2018.
        Thyroid. 2022; 32: 560-570
        • Lim H.
        • Devesa S.S.
        • Sosa J.A.
        • et al.
        Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013.
        JAMA. 2017; 317: 1338-1348
        • Tuttle R.M.
        • Ahuja S.
        • Avram A.M.
        • et al.
        Controversies, consensus, and collaboration in the use of (131)i therapy in differentiated thyroid cancer: a joint statement from the american thyroid association, the european association of nuclear medicine, the society of nuclear medicine and molecular imaging, and the european thyroid association.
        Thyroid. 2019; 29: 461-470
        • Durante C.
        • Haddy N.
        • Baudin E.
        • et al.
        Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy.
        J Clin Endocrinol Metab. 2006; 91: 2892-2899
        • Wong K.S.
        • Dong F.
        • Telatar M.
        • et al.
        Papillary thyroid carcinoma with high-grade features versus poorly differentiated thyroid carcinoma: an analysis of clinicopathologic and molecular features and outcome.
        Thyroid. 2021; 31: 933-940
        • Ibrahimpasic T.
        • Ghossein R.
        • Carlson D.L.
        • et al.
        Outcomes in patients with poorly differentiated thyroid carcinoma.
        J Clin Endocrinol Metab. 2014; 99: 1245-1252
        • The Cancer Genome Atlas Research Network
        Integrated genomic characterization of papillary thyroid carcinoma.
        Cell. 2014; 159: 676-690
        • Yoo S.K.
        • Lee S.
        • Kim S.J.
        • et al.
        Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers.
        PLoS Genet. 2016; 12: e1006239
        • Pekova B.
        • Sykorova V.
        • Dvorakova S.
        • et al.
        RET, NTRK, ALK, BRAF, and MET Fusions in a large cohort of pediatric papillary thyroid carcinomas.
        Thyroid. 2020; 30: 1771-1780
        • Morton L.M.
        • Karyadi D.M.
        • Stewart C.
        • et al.
        Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident.
        Science. 2021; 372: eabg2538-eabg2725
        • Chu Y.H.
        • Wirth L.J.
        • Farahani A.A.
        • et al.
        Clinicopathologic features of kinase fusion-related thyroid carcinomas: an integrative analysis with molecular characterization.
        Mod Pathol. 2020; 33: 2458-2472
        • Vanden Borre P.
        • Schrock A.B.
        • Anderson P.M.
        • et al.
        pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations, including kinase fusions.
        Oncologist. 2017; 22: 255-263
        • Lee Y.C.
        • Hsu C.Y.
        • Lai C.R.
        • et al.
        NTRK-rearranged papillary thyroid carcinoma demonstrates frequent subtle nuclear features and indeterminate cytologic diagnoses.
        Cancer Cytopathol. 2022; 130: 136-143
        • Panebianco F.
        • Nikitski A.V.
        • Nikiforova M.N.
        • et al.
        Characterization of thyroid cancer driven by known and novel ALK fusions.
        Endocr Relat Cancer. 2019; 26: 803-814
        • Viswanathan K.
        • Chu Y.H.
        • Faquin W.C.
        • et al.
        Cytomorphologic features of NTRK-rearranged thyroid carcinoma.
        Cancer Cytopathol. 2020; 128: 812-827
        • Abi-Raad R.
        • Prasad M.L.
        • Adeniran A.J.
        • et al.
        Fine-needle aspiration cytomorphology of papillary thyroid carcinoma with NTRK gene rearrangement from a case series with predominantly indeterminate cytology.
        Cancer Cytopathol. 2020; 128: 803-811
        • Prasad M.L.
        • Vyas M.
        • Horne M.J.
        • et al.
        NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States.
        Cancer. 2016; 122: 1097-1107
        • Desai M.A.
        • Mehrad M.
        • Ely K.A.
        • et al.
        secretory carcinoma of the thyroid gland: report of a highly aggressive case clinically mimicking undifferentiated carcinoma and review of the literature.
        Head Neck Pathol. 2019; 13: 562-572
        • Landa I.
        • Ibrahimpasic T.
        • Boucai L.
        • et al.
        Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers.
        J Clin Invest. 2016; 126: 1052-1066
        • Pozdeyev N.
        • Gay L.M.
        • Sokol E.S.
        • et al.
        Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers.
        Clin Cancer Res. 2018; 24: 3059-3068
        • Kunstman J.W.
        • Juhlin C.C.
        • Goh G.
        • et al.
        Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing.
        Hum Mol Genet. 2015; 24: 2318-2329
        • Xu B.
        • David J.
        • Dogan S.
        • et al.
        Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases.
        Histopathology. 2022; 80: 322-337
        • Kumari S.
        • Adewale R.
        • Klubo-Gwiezdzinska J.
        The molecular landscape of hürthle cell thyroid cancer is associated with altered mitochondrial function-a comprehensive review.
        Cells. 2020; 9: 1570
        • Ganly I.
        • Makarov V.
        • Deraje S.
        • et al.
        Integrated genomic analysis of hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes.
        Cancer Cell. 2018; 34: 256-270.e255
        • Gopal R.K.
        • Kübler K.
        • Calvo S.E.
        • et al.
        Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in hürthle cell carcinoma.
        Cancer Cell. 2018; 34: 242-255.e245
        • Gasparre G.
        • Porcelli A.M.
        • Bonora E.
        • et al.
        Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors.
        Proc Natl Acad Sci U S A. 2007; 104: 9001-9006
        • Cruz-Migoni A.
        • Canning P.
        • Quevedo C.E.
        • et al.
        Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds.
        Proc Natl Acad Sci U S A. 2019; 116: 2545-2550
        • Liu J.
        • Kang R.
        • Tang D.
        The KRAS-G12C inhibitor: activity and resistance.
        Cancer Gene Ther. 2022; 29: 875-878
        • Stransky N.
        • Cerami E.
        • Schalm S.
        • et al.
        The landscape of kinase fusions in cancer.
        Nat Commun. 2014; 5: 4846
        • Schlumberger M.
        • Tahara M.
        • Wirth L.J.
        • et al.
        Lenvatinib versus placebo in radioiodine-refractory thyroid cancer.
        N Engl J Med. 2015; 372: 621-630
        • Brose M.S.
        • Nutting C.M.
        • Jarzab B.
        • et al.
        Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial.
        Lancet. 2014; 384: 319-328
        • Subbiah V.
        • Cote G.J.
        Advances in targeting RET-dependent cancers.
        Cancer Discov. 2020; 10: 498-505
        • Brose M.S.
        • Cabanillas M.E.
        • Cohen E.E.
        • et al.
        Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial.
        Lancet Oncol. 2016; 17: 1272-1282
        • Subbiah V.
        • Kreitman R.J.
        • Wainberg Z.A.
        • et al.
        Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer.
        J Clin Oncol. 2018; 36: 7-13
        • Subbiah V.
        • Kreitman R.J.
        • Wainberg Z.A.
        • et al.
        Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study.
        Ann Oncol. 2022; 33: 406-415
        • Poulikakos P.I.
        • Zhang C.
        • Bollag G.
        • et al.
        RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF.
        Nature. 2010; 464: 427-430
        • Purdie K.J.
        • Proby C.M.
        • Rizvi H.
        • et al.
        The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions.
        Front Microbiol. 2018; 9: 1806
        • Cabanillas M.E.
        • Dadu R.
        • Iyer P.
        • et al.
        Acquired secondary RAS mutation in BRAF(V600E)-mutated thyroid cancer patients treated with BRAF inhibitors.
        Thyroid. 2020; 30: 1288-1296
        • Ho A.L.
        • Grewal R.K.
        • Leboeuf R.
        • et al.
        Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer.
        N Engl J Med. 2013; 368: 623-632
        • Tchekmedyian V.
        • Dunn L.
        • Sherman E.
        • et al.
        Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial.
        Thyroid. 2022; 32: 273-282
        • Qiao P.P.
        • Tian K.S.
        • Han L.T.
        • et al.
        Correlation of mismatch repair deficiency with clinicopathological features and programmed death-ligand 1 expression in thyroid carcinoma.
        Endocrine. 2022; 76: 660-670
        • Wirth L.J.
        • Sherman E.
        • Robinson B.
        • et al.
        Efficacy of selpercatinib in RET-altered thyroid cancers.
        N Engl J Med. 2020; 383: 825-835
        • Subbiah V.
        • Hu M.I.
        • Wirth L.J.
        • et al.
        Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study.
        Lancet Diabetes Endocrinol. 2021; 9: 491-501
        • Hong D.S.
        • DuBois S.G.
        • Kummar S.
        • et al.
        Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials.
        Lancet Oncol. 2020; 21: 531-540
        • Laetsch T.W.
        • DuBois S.G.
        • Mascarenhas L.
        • et al.
        Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study.
        Lancet Oncol. 2018; 19: 705-714
        • Waguespack S.G.
        • Drilon A.
        • Lin J.J.
        • et al.
        Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma.
        Eur J Endocrinol. 2022; 186: 631-643
        • Doebele R.C.
        • Drilon A.
        • Paz-Ares L.
        • et al.
        Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials.
        Lancet Oncol. 2020; 21: 271-282
        • Drilon A.
        • Li G.
        • Dogan S.
        • et al.
        What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC).
        Ann Oncol. 2016; 27: 920-926
        • Drilon A.
        • Laetsch T.W.
        • Kummar S.
        • et al.
        Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children.
        N Engl J Med. 2018; 378: 731-739
        • Russo M.
        • Misale S.
        • Wei G.
        • et al.
        Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer.
        Cancer Discov. 2016; 6: 36-44
        • Hong D.S.
        • Bauer T.M.
        • Lee J.J.
        • et al.
        Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study.
        Ann Oncol. 2019; 30: 325-331
        • Florou V.
        • Nevala-Plagemann C.
        • Whisenant J.
        • et al.
        clinical activity of selitrectinib in a patient with mammary analogue secretory carcinoma of the parotid gland with secondary resistance to entrectinib.
        J Natl Compr Canc Netw. 2021; 19: 478-482
        • Murray B.W.
        • Rogers E.
        • Zhai D.
        • et al.
        Molecular characteristics of repotrectinib that enable potent inhibition of TRK fusion proteins and resistant mutations.
        Mol Cancer Ther. 2021; 20: 2446-2456
        • Demeure M.J.
        • Aziz M.
        • Rosenberg R.
        • et al.
        Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4-ALK translocation as a therapeutic target.
        World J Surg. 2014; 38: 1296-1305
        • de Salins V.
        • Loganadane G.
        • Joly C.
        • et al.
        Complete response in anaplastic lymphoma kinase-rearranged oncocytic thyroid cancer: a case report and review of literature.
        World J Clin Oncol. 2020; 11: 495-503
        • Leroy L.
        • Bonhomme B.
        • Le Moulec S.
        • et al.
        Remarkable response to ceritinib and brigatinib in an anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma previously treated with crizotinib.
        Thyroid. 2020; 30: 343-344
        • Godbert Y.
        • Henriques de Figueiredo B.
        • Bonichon F.
        • et al.
        Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma.
        J Clin Oncol. 2015; 33: e84-e87
        • Hillier K.
        • Hughes A.
        • Shamberger R.C.
        • et al.
        A novel ALK fusion in pediatric medullary thyroid carcinoma.
        Thyroid. 2019; 29: 1704-1707
        • Dagogo-Jack I.
        • Rooney M.
        • Lin J.J.
        • et al.
        Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity.
        Clin Cancer Res. 2019; 25: 6662-6670
        • Toyokawa G.
        • Seto T.
        Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: clinical and preclinical data.
        Oncol Res Treat. 2015; 38: 291-298
        • Lim S.M.
        • Chang H.
        • Yoon M.J.
        • et al.
        A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes.
        Ann Oncol. 2013; 24: 3089-3094
        • Hanna G.J.
        • Busaidy N.L.
        • Chau N.G.
        • et al.
        Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase II study.
        Clin Cancer Res. 2018; 24: 1546-1553
        • Schneider T.C.
        • de Wit D.
        • Links T.P.
        • et al.
        Everolimus in patients with advanced follicular-derived thyroid cancer: results of a phase II clinical trial.
        J Clin Endocrinol Metab. 2017; 102: 698-707
        • Roman S.
        • Lin R.
        • Sosa J.A.
        Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases.
        Cancer. 2006; 107: 2134-2142
        • Stamatakos M.
        • Paraskeva P.
        • Stefanaki C.
        • et al.
        Medullary thyroid carcinoma: The third most common thyroid cancer reviewed.
        Oncol Lett. 2011; 2: 49-53
        • Wells Jr., S.A.
        • Asa S.L.
        • Dralle H.
        • et al.
        Revised american thyroid association guidelines for the management of medullary thyroid carcinoma.
        Thyroid. 2015; 25: 567-610
        • Gujral T.S.
        • Singh V.K.
        • Jia Z.
        • et al.
        Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B.
        Cancer Res. 2006; 66: 10741-10749
        • Chu Y.H.
        • Lloyd R.V.
        Medullary thyroid carcinoma: recent advances including MicroRNA expression.
        Endocr Pathol. 2016; 27: 312-324
        • Leboulleux S.
        • Travagli J.P.
        • Caillou B.
        • et al.
        Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course.
        Cancer. 2002; 94: 44-50
        • Moura M.M.
        • Cavaco B.M.
        • Pinto A.E.
        • et al.
        Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas.
        Br J Cancer. 2009; 100: 1777-1783
        • Grubbs E.G.
        • Ng P.K.
        • Bui J.
        • et al.
        RET fusion as a novel driver of medullary thyroid carcinoma.
        J Clin Endocrinol Metab. 2015; 100: 788-793
        • Kasaian K.
        • Wiseman S.M.
        • Walker B.A.
        • et al.
        Putative BRAF activating fusion in a medullary thyroid cancer.
        Cold Spring Harb Mol Case Stud. 2016; 2: a000729
        • Ji J.H.
        • Oh Y.L.
        • Hong M.
        • et al.
        Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer.
        PLoS Genet. 2015; 11: e1005467
        • Jr S.A.W.
        • Robinson B.G.
        • Gagel R.F.
        • et al.
        Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial.
        J Clin Oncol. 2012; 30: 134-141
        • Elisei R.
        • Schlumberger M.J.
        • Müller S.P.
        • et al.
        Cabozantinib in progressive medullary thyroid cancer.
        J Clin Oncol. 2013; 31: 3639-3646
        • Brose M.S.
        • Robinson B.
        • Sherman S.I.
        • et al.
        Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet Oncol. 2021; 22: 1126-1138
        • Solomon B.J.
        • Tan L.
        • Lin J.J.
        • et al.
        RET Solvent Front Mutations Mediate Acquired Resistance to Selective RET Inhibition in RET-Driven Malignancies.
        J Thorac Oncol. 2020; 15: 541-549
        • Subbiah V.
        • Shen T.
        • Terzyan S.S.
        • et al.
        Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations.
        Ann Oncol. 2021; 32: 261-268
        • Drilon A.E.
        • Zhai D.
        • Rogers E.
        • et al.
        The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models.
        J Clin Oncol. 2020; 38: 3616
        • Moura M.M.
        • Cavaco B.M.
        • Pinto A.E.
        • et al.
        High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas.
        J Clin Endocrinol Metab. 2011; 96: E863-E868
        • Tate J.G.
        • Bamford S.
        • Jubb H.C.
        • et al.
        COSMIC: the catalogue of somatic mutations in cancer.
        Nucleic Acids Res. 2019; 47: D941-D947
        • Moore A.R.
        • Rosenberg S.C.
        • McCormick F.
        • et al.
        RAS-targeted therapies: is the undruggable drugged?.
        Nat Rev Drug Discov. 2020; 19: 533-552
        • Hong D.S.
        • Cabanillas M.E.
        • Wheler J.
        • et al.
        Inhibition of the Ras/Raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies.
        J Clin Endocrinol Metab. 2011; 96: 997-1005
        • Loo E.
        • Khalili P.
        • Beuhler K.
        • et al.
        BRAF V600E mutation across multiple tumor types: correlation between DNA-based sequencing and mutation-specific immunohistochemistry.
        Appl Immunohistochem Mol Morphol. 2018; 26: 709-713
        • Ritterhouse L.L.
        • Barletta J.A.
        BRAF V600E mutation-specific antibody: a review.
        Semin Diagn Pathol. 2015; 32: 400-408
        • Saliba M.
        • Katabi N.
        • Dogan S.
        • et al.
        NRAS Q61R immunohistochemical staining in thyroid pathology: sensitivity, specificity and utility.
        Histopathology. 2021; 79: 650-660
        • Crescenzi A.
        • Fulciniti F.
        • Bongiovanni M.
        • et al.
        Detecting N-RAS Q61R Mutated Thyroid Neoplasias by Immunohistochemistry.
        Endocr Pathol. 2017; 28: 71-74
        • Solomon J.P.
        • Linkov I.
        • Rosado A.
        • et al.
        NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls.
        Mod Pathol. 2020; 33: 38-46
        • Solomon J.P.
        • Hechtman J.F.
        Detection of NTRK fusions: merits and limitations of current diagnostic platforms.
        Cancer Res. 2019; 79: 3163-3168
        • Park G.
        • Kim T.H.
        • Lee H.O.
        • et al.
        Standard immunohistochemistry efficiently screens for anaplastic lymphoma kinase rearrangements in differentiated thyroid cancer.
        Endocr Relat Cancer. 2015; 22: 55-63
        • Chou A.
        • Fraser S.
        • Toon C.W.
        • et al.
        A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma.
        Am J Surg Pathol. 2015; 39: 652-659
        • Yang S.R.
        • Aypar U.
        • Rosen E.Y.
        • et al.
        A performance comparison of commonly used assays to detect RET fusions.
        Clin Cancer Res. 2021; 27: 1316-1328
        • Nozaki Y.
        • Yamamoto H.
        • Iwasaki T.
        • et al.
        Clinicopathological features and immunohistochemical utility of NTRK-, ALK-, and ROS1-rearranged papillary thyroid carcinomas and anaplastic thyroid carcinomas.
        Hum Pathol. 2020; 106: 82-92
        • Lee Y.C.
        • Chen J.Y.
        • Huang C.J.
        • et al.
        Detection of NTRK1/3 rearrangements in papillary thyroid carcinoma using immunohistochemistry, fluorescent in situ hybridization, and next-generation sequencing.
        Endocr Pathol. 2020; 31: 348-358
        • Rosenbaum J.N.
        • Bloom R.
        • Forys J.T.
        • et al.
        Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer.
        Mod Pathol. 2018; 31: 791-808
        • Chu Y.H.
        • Barbee J.
        • Yang S.R.
        • et al.
        Clinical utility and performance of an ultrarapid multiplex RNA-based assay for detection of ALK, ROS1, RET, and NTRK1/2/3 rearrangements and MET exon 14 skipping alterations.
        J Mol Diagn. 2022; 24: 642-654
        • Tong Y.
        • Zhao Z.
        • Liu B.
        • et al.
        5'/3' imbalance strategy to detect ALK fusion genes in circulating tumor RNA from patients with non-small cell lung cancer.
        J Exp Clin Cancer Res. 2018; 37: 68
        • Liu Y.
        • Wu S.
        • Shi X.
        • et al.
        Clinical evaluation of the effectiveness of fusion-induced asymmetric transcription assay-based reverse transcription droplet digital PCR for ALK detection in formalin-fixed paraffin-embedded samples from lung cancer.
        Thorac Cancer. 2020; 11: 2252-2261
        • Lira M.E.
        • Choi Y.L.
        • Lim S.M.
        • et al.
        A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer.
        J Mol Diagn. 2014; 16: 229-243
        • Rogers T.M.
        • Arnau G.M.
        • Ryland G.L.
        • et al.
        Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer.
        Sci Rep. 2017; 7: 42259
        • Baitei E.Y.
        • Zou M.
        • Al-Mohanna F.
        • et al.
        Aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma.
        J Pathol. 2009; 217: 707-715
        • Cocco E.
        • Scaltriti M.
        • Drilon A.
        NTRK fusion-positive cancers and TRK inhibitor therapy.
        Nat Rev Clin Oncol. 2018; 15: 731-747
        • Shonka Jr., D.C.
        • Ho A.
        • Chintakuntlawar A.V.
        • et al.
        american head and neck society endocrine surgery section and international thyroid oncology group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment.
        Head Neck. 2022; 44: 1277-1300
        • Wong K.S.
        • Lorch J.H.
        • Alexander E.K.
        • et al.
        Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas.
        Thyroid. 2019; 29: 666-673
        • Genutis L.K.
        • Tomsic J.
        • Bundschuh R.A.
        • et al.
        Microsatellite instability occurs in a subset of follicular thyroid cancers.
        Thyroid. 2019; 29: 523-529

      Further reading

        • Subbiah Vivek
        • Wolf Jürgen
        • Konda Bhavana
        • et al.
        Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial.
        Lancet Oncology. 2022; 23 (In this issue): 1261-1273https://doi.org/10.1016/S1470-2045(22)00541-1