Advertisement
Review Article| Volume 16, ISSUE 1, P119-129, March 2023

Download started.

Ok

Back to Biochemistry

Evaluation for and Prognostic Significance of SDH Mutations in Paragangliomas and Pheochromocytomas

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Turchini J.
        • Cheung V.K.Y.
        • Tischler A.S.
        • et al.
        Pathology and genetics of phaeochromocytoma and paraganglioma.
        Histopathology. 2018; 72: 97-105
        • Gill A.J.
        Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia.
        Pathology. 2012; 44: 285-292
        • Bholah R.
        • Bunchman T.E.
        Review of Pediatric Pheochromocytoma and Paraganglioma.
        Front Pediatr. 2017; 5: 155
        • Gill A.J.
        Succinate dehydrogenase (SDH)-deficient neoplasia.
        Histopathology. 2018; 72: 106-116
        • Redlich A.
        • Pamporaki C.
        • Lessel L.
        • et al.
        Pseudohypoxic pheochromocytomas and paragangliomas dominate in children.
        Pediatr Blood Cancer. 2021; 68: e28981
        • de Tersant M.
        • Genere L.
        • Freycon C.
        • et al.
        Pheochromocytoma and Paraganglioma in Children and Adolescents: Experience of the French Society of Pediatric Oncology (SFCE).
        J Endocr Soc. 2020; 4: bvaa039
        • King K.S.
        • Prodanov T.
        • Kantorovich V.
        • et al.
        Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations.
        J Clin Oncol. 2011; 29: 4137-4142
        • Gottlieb E.
        • Tomlinson I.P.
        Mitochondrial tumour suppressors: a genetic and biochemical update.
        Nat Rev Cancer. 2005; 5: 857-866
        • King A.
        • Selak M.A.
        • Gottlieb E.
        Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer.
        Oncogene. 2006; 25: 4675-4682
        • van Nederveen F.H.
        • Gaal J.
        • Favier J.
        • et al.
        An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis.
        Lancet Oncol. 2009; 10: 764-771
        • Pollard P.J.
        • Briere J.J.
        • Alam N.A.
        • et al.
        Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations.
        Hum Mol Genet. 2005; 14: 2231-2239
        • Morin A.
        • Goncalves J.
        • Moog S.
        • et al.
        TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2alpha-Driven Mesenchymal Transition.
        Cell Rep. 2020; 30: 4551-4566.e7
        • Gill A.J.
        • Toon C.W.
        • Clarkson A.
        • et al.
        Succinate dehydrogenase deficiency is rare in pituitary adenomas.
        Am J Surg Pathol. 2014; 38: 560-566
        • Haller F.
        • Moskalev E.A.
        • Faucz F.R.
        • et al.
        Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad.
        Endocr Relat Cancer. 2014; 21: 567-577
        • Killian J.K.
        • Miettinen M.
        • Walker R.L.
        • et al.
        Recurrent epimutation of SDHC in gastrointestinal stromal tumors.
        Sci Transl Med. 2014; 6: 268ra177
        • Daumova M.
        • Svajdler M.
        • Fabian P.
        • et al.
        SDHC Methylation Pattern in Patients With Carney Triad.
        Appl Immunohistochem Mol Morphol. 2021; 29: 599-605
        • Cardot-Bauters C.
        • Carnaille B.
        • Aubert S.
        • et al.
        A Full Phenotype of Paraganglioma Linked to a Germline SDHB Mosaic Mutation.
        J Clin Endocrinol Metab. 2019; 104: 3362-3366
        • Gill A.J.
        • Chou A.
        • Vilain R.
        • et al.
        Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types.
        Am J Surg Pathol. 2010; 34: 636-644
        • Miettinen M.
        • Wang Z.F.
        • Sarlomo-Rikala M.
        • et al.
        Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age.
        Am J Surg Pathol. 2011; 35: 1712-1721
        • Fuchs T.L.
        • Maclean F.
        • Turchini J.
        • et al.
        Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients.
        Mod Pathol. 2021; 35: 836-849
        • Rodriguez F.J.
        • Aubry M.C.
        • Tazelaar H.D.
        • et al.
        Pulmonary chondroma: a tumor associated with Carney triad and different from pulmonary hamartoma.
        Am J Surg Pathol. 2007; 31: 1844-1853
        • Chatzopoulos K.
        • Fritchie K.J.
        • Aubry M.C.
        • et al.
        Loss of succinate dehydrogenase B immunohistochemical expression distinguishes pulmonary chondromas from hamartomas.
        Histopathology. 2019; 75: 825-832
        • Benn D.E.
        • Robinson B.G.
        • Clifton-Bligh R.J.
        15 YEARS OF PARAGANGLIOMA: Clinical manifestations of paraganglioma syndromes types 1-5.
        Endocr Relat Cancer. 2015; 22: T91-T103
        • Rasheed M.
        • Tarjan G.
        Succinate Dehydrogenase Complex: An Updated Review.
        Arch Pathol Lab Med. 2018; 142: 1564-1570
        • Bourgeron T.
        • Rustin P.
        • Chretien D.
        • et al.
        Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency.
        Nat Genet. 1995; 11: 144-149
        • Dwight T.
        • Benn D.E.
        • Clarkson A.
        • et al.
        Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors.
        Am J Surg Pathol. 2013; 37: 226-233
        • Burnichon N.
        • Briere J.J.
        • Libe R.
        • et al.
        SDHA is a tumor suppressor gene causing paraganglioma.
        Hum Mol Genet. 2010; 19: 3011-3020
        • Benn D.E.
        • Gimenez-Roqueplo A.P.
        • Reilly J.R.
        • et al.
        Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes.
        J Clin Endocrinol Metab. 2006; 91: 827-836
        • Gimenez-Roqueplo A.P.
        • Favier J.
        • Rustin P.
        • et al.
        Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas.
        Cancer Res. 2003; 63: 5615-5621
        • Brouwers F.M.
        • Eisenhofer G.
        • Tao J.J.
        • et al.
        High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing.
        J Clin Endocrinol Metab. 2006; 91: 4505-4509
        • Timmers H.J.
        • Kozupa A.
        • Eisenhofer G.
        • et al.
        Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas.
        J Clin Endocrinol Metab. 2007; 92: 779-786
        • Schiavi F.
        • Milne R.L.
        • Anda E.
        • et al.
        Are we overestimating the penetrance of mutations in SDHB?.
        Hum Mutat. 2010; 31: 761-762
        • Baysal B.E.
        Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors.
        Biochim Biophys Acta. 2013; 1827: 573-577
        • Neumann H.P.
        • Erlic Z.
        Maternal transmission of symptomatic disease with SDHD mutation: fact or fiction?.
        J Clin Endocrinol Metab. 2008; 93: 1573-1575
        • Abramowitz L.K.
        • Bartolomei M.S.
        Genomic imprinting: recognition and marking of imprinted loci.
        Curr Opin Genet Dev. 2012; 22: 72-78
        • Kunst H.P.
        • Rutten M.H.
        • de Monnink J.P.
        • et al.
        SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma.
        Clin Cancer Res. 2011; 17: 247-254
        • Neumann H.P.
        • Pawlu C.
        • Peczkowska M.
        • et al.
        Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations.
        JAMA. 2004; 292: 943-951
        • Ricketts C.J.
        • Forman J.R.
        • Rattenberry E.
        • et al.
        Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD.
        Hum Mutat. 2010; 31: 41-51
        • Benn D.E.
        • Zhu Y.
        • Andrews K.A.
        • et al.
        Bayesian approach to determining penetrance of pathogenic SDH variants.
        J Med Genet. 2018; 55: 729-734
        • Maniam P.
        • Zhou K.
        • Lonergan M.
        • et al.
        Pathogenicity and Penetrance of Germline SDHA Variants in Pheochromocytoma and Paraganglioma (PPGL).
        J Endocr Soc. 2018; 2: 806-816
        • Favier J.
        • Meatchi T.
        • Robidel E.
        • et al.
        Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study.
        Mod Pathol. 2020; 33: 57-64
        • Chatzopoulos K.
        • Aubry M.C.
        • Gupta S.
        Immunohistochemical expression of carbonic anhydrase 9, glucose transporter 1, and paired box 8 in von Hippel-Lindau disease-related lesions.
        Hum Pathol. 2022; 123: 93-101
        • Gupta S.
        • Zhang J.
        • Rivera M.
        • et al.
        Urinary Bladder Paragangliomas: Analysis of Succinate Dehydrogenase and Outcome.
        Endocr Pathol. 2016; 27: 243-252
        • Gupta S.
        • Swanson A.A.
        • Chen Y.B.
        • et al.
        Incidence of succinate dehydrogenase and fumarate hydratase-deficient renal cell carcinoma based on immunohistochemical screening with SDHA/SDHB and FH/2SC.
        Hum Pathol. 2019; 91: 114-122
        • Trpkov K.
        • Siadat F.
        Immunohistochemical screening for the diagnosis of succinate dehydrogenase-deficient renal cell carcinoma and fumarate hydratase-deficient renal cell carcinoma.
        Ann Transl Med. 2019; 7: S324
        • Seabrook A.J.
        • Harris J.E.
        • Velosa S.B.
        • et al.
        Multiple Endocrine Tumors Associated with Germline MAX Mutations: Multiple Endocrine Neoplasia Type 5?.
        J Clin Endocrinol Metab. 2021; 106: 1163-1182
        • Cheung V.K.Y.
        • Gill A.J.
        • Chou A.
        Old, New, and Emerging Immunohistochemical Markers in Pheochromocytoma and Paraganglioma.
        Endocr Pathol. 2018; 29: 169-175
        • Korpershoek E.
        • Koffy D.
        • Eussen B.H.
        • et al.
        Complex MAX Rearrangement in a Family With Malignant Pheochromocytoma, Renal Oncocytoma, and Erythrocytosis.
        J Clin Endocrinol Metab. 2016; 101: 453-460
        • Korpershoek E.
        • Favier J.
        • Gaal J.
        • et al.
        SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas.
        J Clin Endocrinol Metab. 2011; 96: E1472-E1476
        • Wagner A.J.
        • Remillard S.P.
        • Zhang Y.X.
        • et al.
        Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors.
        Mod Pathol. 2013; 26: 289-294
        • Taieb D.
        • Pacak K.
        Molecular imaging and theranostic approaches in pheochromocytoma and paraganglioma.
        Cell Tissue Res. 2018; 372: 393-401
        • Satapathy S.
        • Mittal B.R.
        • Bhansali A.
        Peptide receptor radionuclide therapy in the management of advanced pheochromocytoma and paraganglioma: A systematic review and meta-analysis.
        Clin Endocrinol (Oxf). 2019; 91: 718-727
        • Asa S.L.
        • Ezzat S.
        • Mete O.
        The Diagnosis and Clinical Significance of Paragangliomas in Unusual Locations.
        J Clin Med. 2018; 7
        • Smith J.D.
        • Harvey R.N.
        • Darr O.A.
        • et al.
        Head and neck paragangliomas: A two-decade institutional experience and algorithm for management.
        Laryngoscope Investig Otolaryngol. 2017; 2: 380-389
        • Berends A.M.A.
        • Buitenwerf E.
        • de Krijger R.R.
        • et al.
        Incidence of pheochromocytoma and sympathetic paraganglioma in the Netherlands: A nationwide study and systematic review.
        Eur J Intern Med. 2018; 51: 68-73
        • Erickson D.
        • Kudva Y.C.
        • Ebersold M.J.
        • et al.
        Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients.
        J Clin Endocrinol Metab. 2001; 86: 5210-5216
        • Eisenhofer G.
        • Goldstein D.S.
        • Sullivan P.
        • et al.
        Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma methoxytyramine.
        J Clin Endocrinol Metab. 2005; 90: 2068-2075
        • Van Der Horst-Schrivers A.N.
        • Osinga T.E.
        • Kema I.P.
        • et al.
        Dopamine excess in patients with head and neck paragangliomas.
        Anticancer Res. 2010; 30: 5153-5158
        • Applebaum E.L.
        Images in clinical medicine. Paraganglioma of the middle ear.
        N Engl J Med. 1995; 333: 1677
        • Netterville J.L.
        • Jackson C.G.
        • Miller F.R.
        • et al.
        Vagal paraganglioma: a review of 46 patients treated during a 20-year period.
        Arch Otolaryngol Head Neck Surg. 1998; 124: 1133-1140
        • Offergeld C.
        • Brase C.
        • Yaremchuk S.
        • et al.
        Head and neck paragangliomas: clinical and molecular genetic classification.
        Clinics (Sao Paulo). 2012; 67: 19-28
        • Astrom K.
        • Cohen J.E.
        • Willett-Brozick J.E.
        • et al.
        Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect.
        Hum Genet. 2003; 113: 228-237
        • Cerecer-Gil N.Y.
        • Figuera L.E.
        • Llamas F.J.
        • et al.
        Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma.
        Clin Cancer Res. 2010; 16: 4148-4154
        • Mak J.K.
        • Kay M.
        Carotid body tumour associated with cyanotic heart disease.
        BMJ Case Rep. 2016; 2016
        • Kriegsmann K.
        • Zgorzelski C.
        • Kazdal D.
        • et al.
        Insulinoma-associated Protein 1 (INSM1) in Thoracic Tumors is Less Sensitive but More Specific Compared With Synaptophysin, Chromogranin A, and CD56.
        Appl Immunohistochem Mol Morphol. 2020; 28: 237-242
        • Kimura N.
        • Shiga K.
        • Kaneko K.
        • et al.
        The Diagnostic Dilemma of GATA3 Immunohistochemistry in Pheochromocytoma and Paraganglioma.
        Endocr Pathol. 2020; 31: 95-100
        • Zhou Y.Y.
        • Coffey M.
        • Mansur D.
        • et al.
        Images in Endocrine Pathology: Progressive Loss of Sustentacular Cells in a Case of Recurrent Jugulotympanic Paraganglioma over a Span of 5 years.
        Endocr Pathol. 2020; 31: 310-314
        • Duet M.
        • Sauvaget E.
        • Petelle B.
        • et al.
        Clinical impact of somatostatin receptor scintigraphy in the management of paragangliomas of the head and neck.
        J Nucl Med. 2003; 44: 1767-1774
        • Kimura N.
        • Tateno H.
        • Saijo S.
        • et al.
        Familial cervical paragangliomas with lymph node metastasis expressing somatostatin receptor type 2A.
        Endocr Pathol. 2010; 21: 139-143
        • Shi Y.
        • Brandler T.C.
        • Yee-Chang M.
        • et al.
        Application of GATA 3 and TTF-1 in differentiating parathyroid and thyroid nodules on cytology specimens.
        Diagn Cytopathol. 2020; 48: 128-137
        • Turchini J.
        • Sioson L.
        • Clarkson A.
        • et al.
        Utility of GATA-3 Expression in the Analysis of Pituitary Neuroendocrine Tumour (PitNET) Transcription Factors.
        Endocr Pathol. 2020; 31: 150-155
        • Dermawan J.K.
        • Mukhopadhyay S.
        • Shah A.A.
        Frequency and extent of cytokeratin expression in paraganglioma: an immunohistochemical study of 60 cases from 5 anatomic sites and review of the literature.
        Hum Pathol. 2019; 93: 16-22
        • Baloch Z.
        • Mete O.
        • Asa S.L.
        Immunohistochemical Biomarkers in Thyroid Pathology.
        Endocr Pathol. 2018; 29: 91-112
        • Williams M.D.
        Paragangliomas of the Head and Neck: An Overview from Diagnosis to Genetics.
        Head Neck Pathol. 2017; 11: 278-287
        • Ellis R.J.
        • Patel D.
        • Prodanov T.
        • et al.
        The presence of SDHB mutations should modify surgical indications for carotid body paragangliomas.
        Ann Surg. 2014; 260: 158-162
        • McCrary H.C.
        • Babajanian E.
        • Calquin M.
        • et al.
        Characterization of Malignant Head and Neck Paragangliomas at a Single Institution Across Multiple Decades.
        JAMA Otolaryngol Head Neck Surg. 2019; 145: 641-646
        • Turkova H.
        • Prodanov T.
        • Maly M.
        • et al.
        Characteristics and Outcomes of Metastatic Sdhb and Sporadic Pheochromocytoma/Paraganglioma: An National Institutes of Health Study.
        Endocr Pract. 2016; 22: 302-314
        • Ebbehoj A.
        • Stochholm K.
        • Jacobsen S.F.
        • et al.
        Incidence and Clinical Presentation of Pheochromocytoma and Sympathetic Paraganglioma: A Population-based Study.
        J Clin Endocrinol Metab. 2021; 106: e2251-e2261
        • Babic B.
        • Patel D.
        • Aufforth R.
        • et al.
        Pediatric patients with pheochromocytoma and paraganglioma should have routine preoperative genetic testing for common susceptibility genes in addition to imaging to detect extra-adrenal and metastatic tumors.
        Surgery. 2017; 161: 220-227
        • Pamporaki C.
        • Hamplova B.
        • Peitzsch M.
        • et al.
        Characteristics of Pediatric vs Adult Pheochromocytomas and Paragangliomas.
        J Clin Endocrinol Metab. 2017; 102: 1122-1132
        • Nijhoff M.F.
        • Dekkers O.M.
        • Vleming L.J.
        • et al.
        ACTH-producing pheochromocytoma: clinical considerations and concise review of the literature.
        Eur J Intern Med. 2009; 20: 682-685
        • Bayraktar F.
        • Kebapcilar L.
        • Kocdor M.A.
        • et al.
        Cushing's syndrome due to ectopic CRH secretion by adrenal pheochromocytoma accompanied by renal infarction.
        Exp Clin Endocrinol Diabetes. 2006; 114: 444-447
        • Loehry C.A.
        • Kingham J.G.
        • Whorwell P.J.
        Watery diarrhoea and hypokalaemia associated with a phaeochromocytoma.
        Postgrad Med J. 1975; 51: 416-419
        • Eisenhofer G.
        • Klink B.
        • Richter S.
        • et al.
        Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing.
        Clin Biochem Rev. 2017; 38: 69-100
        • Gupta S.
        • Zhang J.
        • Milosevic D.
        • et al.
        Primary Renal Paragangliomas and Renal Neoplasia Associated with Pheochromocytoma/Paraganglioma: Analysis of von Hippel-Lindau (VHL), Succinate Dehydrogenase (SDHX) and Transmembrane Protein 127 (TMEM127).
        Endocr Pathol. 2017; 28: 253-268
        • Casey R.
        • Neumann H.P.H.
        • Maher E.R.
        Genetic stratification of inherited and sporadic phaeochromocytoma and paraganglioma: implications for precision medicine.
        Hum Mol Genet. 2020; 29: R128-R137
        • Fishbein L.
        • Leshchiner I.
        • Walter V.
        • et al.
        Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma.
        Cancer Cell. 2017; 31: 181-193
        • Kluckova K.
        • Tennant D.A.
        Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma.
        Cell Tissue Res. 2018; 372: 367-378
        • Dahia P.L.
        • Ross K.N.
        • Wright M.E.
        • et al.
        A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas.
        Plos Genet. 2005; 1: 72-80
        • Jiang J.
        • Zhang J.
        • Pang Y.
        • et al.
        Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma.
        J Clin Endocrinol Metab. 2020; : 105
        • Kimura N.
        Dopamine beta-hydroxylase: An Essential and Optimal Immunohistochemical Marker for Pheochromocytoma and Sympathetic Paraganglioma.
        Endocr Pathol. 2021; 32: 258-261
        • Timmers H.J.
        • Pacak K.
        • Huynh T.T.
        • et al.
        Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene.
        J Clin Endocrinol Metab. 2008; 93: 4826-4832
        • Mete O.
        • Asa S.L.
        • Giordano T.J.
        • et al.
        Immunohistochemical Biomarkers of Adrenal Cortical Neoplasms.
        Endocr Pathol. 2018; 29: 137-149
        • Pierre C.
        • Agopiantz M.
        • Brunaud L.
        • et al.
        COPPS, a composite score integrating pathological features, PS100 and SDHB losses, predicts the risk of metastasis and progression-free survival in pheochromocytomas/paragangliomas.
        Virchows Arch. 2019; 474: 721-734
        • Kimura N.
        • Takayanagi R.
        • Takizawa N.
        • et al.
        • Phaeochromocytoma Study Group in J
        Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma.
        Endocr Relat Cancer. 2014; 21: 405-414
        • Koh J.M.
        • Ahn S.H.
        • Kim H.
        • et al.
        Validation of pathological grading systems for predicting metastatic potential in pheochromocytoma and paraganglioma.
        PLoS One. 2017; 12: e0187398
        • Thompson L.D.
        Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases.
        Am J Surg Pathol. 2002; 26: 551-566