Advertisement
Review Article| Volume 16, ISSUE 1, P131-150, March 2023

Download started.

Ok

All Together Now

Standardization of Nomenclature for Neuroendocrine Neoplasms across Multiple Organs
Published:December 09, 2022DOI:https://doi.org/10.1016/j.path.2022.09.012

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Oberndorfer S.
        Karzinoide tumoren des dunndarms.
        Frankf Z Pathol. 1907; 1: 426-432
        • Modlin I.M.
        • Shapiro M.D.
        • Kidd M.
        Siegfried Oberndorfer: origins and perspectives of carcinoid tumors.
        Hum Pathol. 2004; 35: 1440-1451
        • Modlin I.M.
        • Champaneria M.C.
        • Bornschein J.
        • et al.
        Evolution of the diffuse neuroendocrine system: clear cells and cloudy origins.
        Neuroendocrinology. 2006; 84: 69-82
        • Klöppel G.
        Oberndorfer and his successors: from carcinoid to neuroendocrine carcinoma.
        Endocr Pathol. 2007; 18: 141-144
        • Asa S.L.
        • Lloyd R.V.
        • Tischler A.S.
        Neuroendocrine neoplasms: historical background and terminologies.
        in: Asa S.L. La Rosa S. Mete O. The spectrum of neuroendocrine neoplasia: a practical approach to diagnosis, classification and therapy. Springer International Publishing, Cham, Switzerland2021: 1-14
        • Gosney J.
        Identification, morphology, and secretory products of the pulmonary endocrine system.
        in: Pulmonary endocrine pathology: endocrine cells and endocrine tumours of the lung. Butterworth-Heinemann Ltd, Oxford (United Kingdom)1992: 6-24
        • Rindi G.
        • Mete O.
        • Uccella S.
        • et al.
        Overview of the 2022 WHO classification of neuroendocrine neoplasms.
        Endocr Pathol. 2022; 33: 115-154
        • WHO Classification of Tumours Editorial Board
        Endocrine and neuroendocrine tumours.
        5th edition. IARC Press, Lyon2022
        • Rindi G.
        • Klimstra D.S.
        • Abedi-Ardekani B.
        • et al.
        A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal.
        Mod Pathol. 2018; 31: 1770-1786
        • Rekhtman N.
        Lung neuroendocrine neoplasms: recent progress and persistent challenges.
        Mod Pathol. 2022; 35: 36-50
        • Basturk O.
        • Yang Z.
        • Tang L.H.
        • et al.
        The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms.
        Am J Surg Pathol. 2015; 39: 683-690
        • Tirosh A.
        • Kebebew E.
        Genetic and epigenetic alterations in pancreatic neuroendocrine tumors.
        J Gastrointest Oncol. 2020; 11: 567-577
        • Bellizzi A.M.
        Immunohistochemistry in the diagnosis and classification of neuroendocrine neoplasms: what can brown do for you?.
        Hum Pathol. 2020; 96: 8-33
        • Duan K.
        • Mete O.
        Algorithmic approach to neuroendocrine tumors in targeted biopsies: practical applications of immunohistochemical markers.
        Cancer Cytopathol. 2016; 124: 871-884
        • WHO Classification of Tumours Editorial Board
        Thoracic tumours.
        5th ed. IARC Press, Lyon2022
        • WHO Classification of Tumours Editorial Board
        Digestive system tumours.
        5th ed. IARC Press, Lyon2019
        • WHO Classification of Tumours Editorial Board
        Head and neck tumours.
        5th ed. IARC Press, Lyon2022
        • Pelosi G.
        • Rindi G.
        • Travis W.D.
        • et al.
        Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice.
        J Thorac Oncol. 2014; 9: 273-284
        • Dasari A.
        • Shen C.
        • Halperin D.
        • et al.
        Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States.
        JAMA Oncol. 2017; 3: 1335-1342
        • Nagtegaal I.D.
        • Odze R.D.
        • Klimstra D.
        • et al.
        The 2019 WHO classification of tumours of the digestive system.
        Histopathology. 2020; 76: 182-188
        • Assarzadegan N.
        • Montgomery E.
        What is new in the 2019 World Health Organization (WHO) Classification of Tumors of the Digestive System: review of selected updates on neuroendocrine neoplasms, appendiceal tumors, and molecular testing.
        Arch Pathol Lab Med. 2020; 145: 664-677
        • Mete O.
        • Wenig B.M.
        Update from the 5th edition of the World Health Organization Classification of Head and Neck Tumors: overview of the 2022 WHO Classification of Head and Neck Neuroendocrine Neoplasms.
        Head Neck Pathol. 2022; 16: 123-142
        • Xue Y.
        • Reid M.D.
        • Pehlivanoglu B.
        • et al.
        Morphologic variants of pancreatic neuroendocrine tumors: clinicopathologic analysis and prognostic stratification.
        Endocr Pathol. 2020; 31: 239-253
        • Kim H.
        • An S.
        • Lee K.
        • et al.
        Pancreatic high-grade neuroendocrine neoplasms in the Korean population: a multicenter study.
        Cancer Res Treat. 2020; 52: 263-276
        • Soga J.
        • Tazawa K.
        Pathologic analysis of carcinoids: histologic re-evaluation of 62 cases.
        Cancer. 1971; 28: 990-998
        • WHO Classification of Tumours Editorial Board
        WHO classification of tumours of the digestive system.
        4th ed. IARC Press, Lyon2010
        • Capella C.
        • Heitz P.U.
        • Höfler H.
        • et al.
        Revised classification of neuroendocrine tumours of the lung, pancreas and gut.
        Virchows Archiv A Pathol Anat. 1995; 425
        • Hochwald S.
        • Sui Z.
        • Conlon K.
        • et al.
        Prognostic factors in pancreatic endocrine neoplasms: an analysis of 136 cases with a proposal for low-grade and intermediate-grade groups.
        J Clin Oncol. 2002; 20: 2633-2642
        • Sorbye H.
        • Welin S.
        • Langer S.W.
        • et al.
        Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study.
        Ann Oncol. 2013; 24: 152-160
        • Sorbye H.
        • Strosberg J.
        • Baudin E.
        • et al.
        Gastroenteropancreatic high-grade neuroendocrine carcinoma.
        Cancer. 2014; 120: 2814-2823
        • Hijioka S.
        • Hosoda W.
        • Matsuo K.
        • et al.
        RB loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: a Japanese multicenter pancreatic NEN-G3 study.
        Clin Cancer Res. 2017; 23: 4625-4632
        • Tang L.H.
        • Basturk O.
        • Sue J.J.
        • et al.
        A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas.
        Am J Surg Pathol. 2016; 40: 1192-1202
        • Tang L.H.
        • Untch B.R.
        • Reidy D.L.
        • et al.
        Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas.
        Clin Cancer Res. 2016; 22: 1011-1017
        • Venizelos A.
        • Elvebakken H.
        • Perren A.
        • et al.
        The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms.
        Endocr Relat Cancer. 2021; 29: 1-14
        • Heetfeld M.
        • Chougnet C.N.
        • Olsen I.H.
        • et al.
        Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms.
        Endocr Rel Cancer. 2015; 22: 657-664
        • Shi H.
        • Chen L.
        • Zhang Q.
        • et al.
        Concordance between the Ki-67 index cutoff value of 55% and differentiation in neuroendocrine tumor and neuroendocrine carcinoma in grade 3 pancreatic neuroendocrine neoplasms.
        Pancreas. 2020; 49: 1378-1382
        • Vélayoudom-Céphise F.L.
        • Duvillard P.
        • Foucan L.
        • et al.
        Are G3 ENETS neuroendocrine neoplasms heterogeneous?.
        Endocr Relat Cancer. 2013; 20: 649-657
        • Jann H.
        • Kayser A.
        • Wiedenmann B.
        • et al.
        Treatment outcomes of patients with G3 neuroendocrine neoplasms [abstract only].
        J Clin Oncol. 2020; 38: 622
        • Raj N.
        • Valentino E.
        • Capanu M.
        • et al.
        Treatment response and outcomes of grade 3 pancreatic neuroendocrine neoplasms based on morphology: well differentiated versus poorly differentiated.
        Pancreas. 2017; 46: 296-301
        • La Rosa S.
        • Sessa F.
        High-grade poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: from morphology to proliferation and back.
        Endocr Pathol. 2014; 25: 193-198
        • Lithgow K.
        • Venkataraman H.
        • Hughes S.
        • et al.
        Well-differentiated gastroenteropancreatic G3 NET: findings from a large single centre cohort.
        Sci Rep. 2021; 11: 17947
        • Konukiewitz B.
        • Jesinghaus M.
        • Steiger K.
        • et al.
        Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3.
        Hum Pathol. 2018; 77: 70-79
        • WHO Classification of Tumours Editorial Board
        WHO classification of tumours of endocrine organs.
        4th ed. IARC Press, Lyon2017
        • Rindi G.
        • Klersy C.
        • Albarello L.
        • et al.
        Competitive testing of the WHO 2010 versus the WHO 2017 grading of pancreatic neuroendocrine neoplasms: data from a large international cohort study.
        Neuroendocrinology. 2018; 107: 375-386
        • Vivero M.
        • Sholl L.
        Borderline” neuroendocrine carcinomas of the lung are clinically and genomically distinct from large-cell neuroendocrine carcinoma [abstract only].
        Mod Pathol. 2016; 29: 467-488
        • Megyesi M.
        • Berta M.
        • Khoor A.
        Endobronchial large-cell neuroendocrine carcinoma.
        Pathol Oncol Res. 2003; 9: 198-200
        • Rekhtman N.
        • Pietanza M.C.
        • Hellmann M.D.
        • et al.
        Next-generation sequencing of pulmonary large-cell neuroendocrine carcinoma reveals small-cell carcinoma-like and non-small-cell carcinoma-like subsets.
        Clin Cancer Res. 2016; 22: 3618-3629
        • Inafuku K.
        • Yokose T.
        • Ito H.
        • et al.
        Two cases of lung neuroendocrine carcinoma with carcinoid morphology.
        Diagn Pathol. 2019; 14: 104
        • Hermans B.C.M.
        • Derks J.L.
        • Moonen L.
        • et al.
        Pulmonary neuroendocrine neoplasms with well differentiated morphology and high proliferative activity: illustrated by a case series and review of the literature.
        Lung Cancer. 2020; 150: 152-158
        • Zhang Y.
        • Wang W.
        • Hu Q.
        • et al.
        Clinic and genetic similarity assessments of atypical carcinoid, neuroendocrine neoplasm with atypical carcinoid morphology and elevated mitotic count and large-cell neuroendocrine carcinoma.
        BMC Cancer. 2022; 22: 321
        • Sazonova O.
        • Manem V.
        • Orain M.
        • et al.
        Transcriptomic data helps refining classification of pulmonary carcinoid tumors with increased mitotic counts.
        Mod Pathol. 2020; 33: 1712-1721
        • Quinn A.M.
        • Chaturvedi A.
        • Nonaka D.
        High-grade neuroendocrine carcinoma of the lung with carcinoid morphology: a study of 12 cases.
        Am J Surg Pathol. 2017; 41: 263-270
        • Nicholson S.A.
        • Beasley M.B.
        • Brambilla E.
        • et al.
        Small-cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens.
        Am J Surg Pathol. 2002; 26: 1184-1197
        • Travis W.D.
        Advances in neuroendocrine lung tumors.
        Ann Oncol. 2010; 21: vii65-vii71
        • Travis W.D.
        Update on small-cell carcinoma and its differentiation from squamous cell carcinoma and other non-small-cell carcinomas.
        Mod Pathol. 2012; 25: S18-S30
        • Fahmy J.N.
        • Varsanik M.A.
        • Hubbs D.
        • et al.
        Pancreatic neuroendocrine tumors: surgical outcomes and survival analysis.
        Am J Surg. 2021; 221: 529-533
        • Okereke I.C.
        • Taber A.M.
        • Griffith R.C.
        • et al.
        Outcomes after surgical resection of pulmonary carcinoid tumors.
        J Cardiothorac Surg. 2016; 11: 35
        • Hu Y.
        • Ye Z.
        • Wang F.
        • et al.
        Role of somatostatin receptor in pancreatic neuroendocrine tumor development, diagnosis, and therapy.
        Front Endocrinol (Lausanne). 2021; 12: 679000
        • Pavel M.
        • Öberg K.
        • Falconi M.
        • et al.
        Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2020; 31: 844-860
        • Starr J.S.
        • Sonbol M.B.
        • Hobday T.J.
        • et al.
        Peptide receptor radionuclide therapy for the treatment of pancreatic neuroendocrine tumors: recent insights.
        Onco Targets Ther. 2020; 13: 3545-3555
        • Baudin E.
        • Caplin M.
        • Garcia-Carbonero R.
        • et al.
        Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2021; 32: 439-451
        • Popa O.
        • Taban S.M.
        • Pantea S.
        • et al.
        The new WHO classification of gastrointestinal neuroendocrine tumors and immunohistochemical expression of somatostatin receptor 2 and 5.
        Exp Ther Med. 2021; 22: 1-9
        • Cakir M.
        • Dworakowska D.
        • Grossman A.
        Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 2––clinical implications.
        J Cell Mol Med. 2010; 14: 2585-2591
        • Rinke A.
        • Müller H.H.
        • Schade-Brittinger C.
        • et al.
        Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group.
        J Clin Oncol. 2009; 27: 4656-4663
        • Caplin M.E.
        • Pavel M.
        • Ćwikła J.B.
        • et al.
        Lanreotide in metastatic enteropancreatic neuroendocrine tumors.
        N Engl J Med. 2014; 371: 224-233
        • Gupta S.
        Intra-arterial liver-directed therapies for neuroendocrine hepatic metastases.
        Semin Intervent Radiol. 2013; 30: 28-38
        • Baere T de
        • Deschamps F.
        • Tselikas L.
        • et al.
        GEP-NETs update: Interventional radiology: role in the treatment of liver metastases from GEP-NETs.
        Eur J Endocrinol. 2015; 172: R151-R166
        • Camus B.
        • Cottereau A.S.
        • Palmieri L.J.
        • et al.
        Indications of peptide receptor radionuclide therapy (PRRT) in gastroenteropancreatic and pulmonary neuroendocrine tumors: an updated review.
        J Clin Med. 2021; 10: 1267
        • Wong M.H.
        • Chan D.L.
        • Lee A.
        • et al.
        Systematic review and meta-analysis on the role of chemotherapy in advanced and metastatic neuroendocrine tumor (NET).
        PLoS ONE. 2016; 11: e0158140
        • Liu I.H.
        • Kunz P.L.
        Biologics in gastrointestinal and pancreatic neuroendocrine tumors.
        J Gastrointest Oncol. 2017; 8: 457-465
        • Yao J.C.
        • Shah M.H.
        • Ito T.
        • et al.
        Everolimus for advanced pancreatic neuroendocrine tumors.
        N Engl J Med. 2011; 364
        • Faivre S.
        • Niccoli P.
        • Castellano D.
        • et al.
        Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study.
        Ann Oncol. 2017; 28: 339-343
        • AKP Ganti
        • Loo B.W.
        • Bassetti M.
        • et al.
        Small-cell lung cancer, version 2.2022, NCCN Clinical Practice Guidelines in Oncology.
        J Natl Compr Canc Netw. 2021; 19: 1441-1464
        • Saltos A.
        • Shafique M.
        • Chiappori A.
        Update on the biology, management, and treatment of small-cell lung cancer (SCLC).
        Front Oncol. 2020; 10: 1074
        • Stelwagen J.
        • de Vries E.G.E.
        • Walenkamp A.M.E.
        Current treatment strategies and future directions for extrapulmonary neuroendocrine carcinomas: a review.
        JAMA Oncol. 2021; 7: 759-770
        • Walenkamp A.M.E.
        • Sonke G.S.
        • Sleijfer D.T.
        Clinical and therapeutic aspects of extrapulmonary small-cell carcinoma.
        Cancer Treat Rev. 2009; 35: 228-236
        • Barnes H.
        • See K.
        • Barnett S.
        • et al.
        Surgery for limited-stage small-cell lung cancer.
        Cochrane Database Syst Rev. 2017; 2017: CD011917
        • Ferrara M.G.
        • Stefani A.
        • Simbolo M.
        • et al.
        Large-cell neuro-endocrine carcinoma of the lung: current treatment options and potential future opportunities.
        Front Oncol. 2021; 11: 650293
        • Corbett V.
        • Arnold S.
        • Anthony L.
        • et al.
        Management of large-cell neuroendocrine carcinoma.
        Front Oncol. 2021; 11: 653162
        • Sakurai H.
        • Asamura H.
        Large-cell neuroendocrine carcinoma of the lung: surgical management.
        Thorac Surg Clin. 2014; 24: 305-311
        • Raman V.
        • Jawitz O.K.
        • Yang C.F.J.
        • et al.
        Outcomes for surgery in large-cell lung neuroendocrine cancer.
        J Thorac Oncol. 2019; 14: 2143-2151
        • Atieh T.
        • Huang C.H.
        Treatment of advanced-stage large-cell neuroendocrine cancer (LCNEC) of the lung: a tale of two diseases.
        Front Oncol. 2021; 11
        • Derks J.L.
        • Leblay N.
        • Thunnissen E.
        • et al.
        Molecular subtypes of pulmonary large-cell neuroendocrine carcinoma predict chemotherapy treatment outcome.
        Clin Cancer Res. 2018; 24: 33-42
        • George J.
        • Walter V.
        • Peifer M.
        • et al.
        Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors.
        Nat Commun. 2018; 9: 1048
        • Miyoshi T.
        • Umemura S.
        • Matsumura Y.
        • et al.
        Genomic profiling of large-cell neuroendocrine carcinoma of the lung.
        Clin Cancer Res. 2017; 23: 757-765
        • Baine M.K.
        • Rekhtman N.
        Multiple faces of pulmonary large-cell neuroendocrine carcinoma: update with a focus on practical approach to diagnosis.
        Transl Lung Cancer Res. 2020; 9
        • Saghaeiannejad Esfahani H.
        • Vela C.M.
        • Chauhan A.
        Prevalence of TP-53/RB-1 co-mutation in large-cell neuroendocrine carcinoma.
        Front Oncol. 2021; 11: 653153
        • Zhuo M.
        • Guan Y.
        • Yang X.
        • et al.
        The prognostic and therapeutic role of genomic subtyping by sequencing tumor or cell-free DNA in pulmonary large-cell neuroendocrine carcinoma.
        Clin Cancer Res. 2020; 26: 892-901
        • Yachida S.
        • Vakiani E.
        • White C.M.
        • et al.
        Small-cell and large-cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors.
        Am J Surg Pathol. 2012; 36: 173-184
        • van Riet J.
        • van de Werken H.J.G.
        • Cuppen E.
        • et al.
        The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets.
        Nat Commun. 2021; 12: 4612
        • Simbolo M.
        • Mafficini A.
        • Sikora K.
        • et al.
        Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D.
        J Pathol. 2017; 241: 488-500
        • Clinical Lung Cancer Genome Project (CLCGP), Network Genomic Medicine (NGM)
        A genomics-based classification of human lung tumors.
        Sci Transl Med. 2013; 5: 209ra153
        • Walch A.K.
        • Zitzelsberger H.F.
        • Aubele M.M.
        • et al.
        Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization.
        Am J Pathol. 1998; 153: 1089-1098
        • Capurso G.
        • Festa S.
        • Valente R.
        • et al.
        Molecular pathology and genetics of pancreatic endocrine tumours.
        J Mol Endocrinol. 2012; 49: R37-R50
        • Floridia G.
        • Grilli G.
        • Salvatore M.
        • et al.
        Chromosomal alterations detected by comparative genomic hybridization in nonfunctioning endocrine pancreatic tumors.
        Cancer Genet Cytogenet. 2005; 156: 23-30
        • Scarpa A.
        • Chang D.K.
        • Nones K.
        • et al.
        Whole-genome landscape of pancreatic neuroendocrine tumours.
        Nature. 2017; 543: 65-71
        • Jiao Y.
        • Shi C.
        • Edil B.H.
        • et al.
        DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors.
        Science. 2011; 331: 1199-1203
        • Corbo V.
        • Dalai I.
        • Scardoni M.
        • et al.
        MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases.
        Endocr Relat Cancer. 2010; 17: 771-783
        • Raj N.P.
        • Soumerai T.
        • Valentino E.
        • et al.
        Next-generation sequencing (NGS) in advanced well differentiated pancreatic neuroendocrine tumors (WD pNETs): a study using MSK-IMPACT.
        J Clin Oncol. 2016; 34: e15661
        • Heaphy C.M.
        • de Wilde R.F.
        • Jiao Y.
        • et al.
        Altered telomeres in tumors with ATRX and DAXX mutations.
        Science. 2011; 333: 425
        • Marinoni I.
        • Kurrer A.S.
        • Vassella E.
        • et al.
        Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors.
        Gastroenterology. 2014; 146: 453-460.e5
        • Kim J.Y.
        • Brosnan-Cashman J.A.
        • An S.
        • et al.
        Alternative lengthening of telomeres in primary pancreatic neuroendocrine tumors is associated with aggressive clinical behavior and poor survival.
        Clin Cancer Res. 2017; 23: 1598-1606
        • Singhi A.D.
        • Liu T.C.
        • Roncaioli J.L.
        • et al.
        Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors.
        Clin Cancer Res. 2017; 23: 600-609
        • Park J.K.
        • Paik W.H.
        • Lee K.
        • et al.
        DAXX/ATRX and MEN1 genes are strong prognostic markers in pancreatic neuroendocrine tumors.
        Oncotarget. 2017; 8: 49796-49806
        • Chan C.S.
        • Laddha S.V.
        • Lewis P.W.
        • et al.
        ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.
        Nat Commun. 2018; 9: 4158
        • Heaphy C.M.
        • VandenBussche C.J.
        Prognostic biomarkers in pancreatic neuroendocrine tumors.
        Cancer Cytopathol. 2021; 129: 841-843
        • Derks J.L.
        • Leblay N.
        • Lantuejoul S.
        • et al.
        New insights into the molecular characteristics of pulmonary carcinoids and large-cell neuroendocrine carcinomas, and the impact on their clinical management.
        J Thorac Oncol. 2018; 13: 752-766
        • Simbolo M.
        • Di Noia V.
        • D’Argento E.
        • et al.
        Exploring the molecular and biological background of lung neuroendocrine tumours.
        J Thorac Dis. 2019; 11: S1194-S1198
        • Fernandez-Cuesta L.
        • Peifer M.
        • Lu X.
        • et al.
        Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids.
        Nat Commun. 2014; 27: 3518
        • Debelenko L.V.
        • Brambilla E.
        • Agarwal S.K.
        • et al.
        Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung.
        Hum Mol Genet. 1997; 6: 2285-2290
        • Swarts D.R.A.
        • Scarpa A.
        • Corbo V.
        • et al.
        MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids.
        J Clin Endocrinol Metab. 2014; 99: E374-E378
        • Rossi G.
        • Bertero L.
        • Marchiò C.
        • et al.
        Molecular alterations of neuroendocrine tumours of the lung.
        Histopathology. 2018; 72: 142-152
        • George J.
        • Lim J.
        • Lang S.
        • et al.
        Comprehensive genomic profiles of small-cell lung cancer.
        Nature. 2015; 524: 47-53
        • Peifer M.
        • Fernández-Cuesta L.
        • Sos M.L.
        • et al.
        Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
        Nat Genet. 2012; 44: 1104-1110
        • Baine M.K.
        • Hsieh M.S.
        • Lai W.V.
        • et al.
        Small-cell lung carcinoma subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: comprehensive immunohistochemical and histopathologic characterization.
        J Thorac Oncol. 2020; 15: 1823-1835
        • Rudin C.M.
        • Poirier J.T.
        • Byers L.A.
        • et al.
        Molecular subtypes of small-cell lung cancer: a synthesis of human and mouse model data.
        Nat Rev Cancer. 2019; 19: 289-297
        • Borromeo M.D.
        • Savage T.K.
        • Kollipara R.K.
        • et al.
        ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs.
        Cell Rep. 2016; 16: 1259-1272
        • Qi J.
        • Zhang J.
        • Liu N.
        • et al.
        Prognostic implications of molecular subtypes in primary small-cell lung cancer and their correlation with cancer immunity.
        Front Oncol. 2022; 12: 779276
        • Bellizzi A.M.
        An algorithmic immunohistochemical approach to define tumor type and assign site of origin.
        Adv Anat Pathol. 2020; 27: 114-163
        • Rooper L.
        • Sharma R.
        • LI Q.
        • et al.
        INSM1 demonstrates superior performance to the individual and combined use of synaptophysin, chromogranin and CD56 for diagnosing neuroendocrine tumors of the thoracic cavity.
        Am J Surg Pathol. 2017; 41: 1561-1569
        • Rosenbaum J.N.
        • Guo Z.
        • Baus R.M.
        • et al.
        INSM1: a novel immunohistochemical and molecular marker for neuroendocrine and neuroepithelial neoplasms.
        Am J Clin Pathol. 2015; 144: 579-591
        • Juhlin C.C.
        • Zedenius J.
        • Höög A.
        Clinical routine application of the second-generation neuroendocrine markers ISL2, INSM1, and secretagogin in neuroendocrine neoplasia: staining outcomes and potential clues for determining tumor origin.
        Endocr Pathol. 2020; 31: 401-410
        • Bellizzi A.
        Assigning site of origin in metastatic neuroendocrine neoplasms: a clinically significant application of diagnostic immunohistochemistry.
        Adv Anat Pathol. 2013; 20: 285-314
        • Bergsland E.K.
        • Nakakura E.K.
        Neuroendocrine tumors of unknown primary: is the primary site really not known?.
        JAMA Surg. 2014; 149: 889-890
        • Catena L.
        • Bichisao E.
        • Milione M.
        • et al.
        Neuroendocrine tumors of unknown primary site: gold dust or misdiagnosed neoplasms?.
        Tumori. 2011; 97: 564-567
        • Scoazec J.Y.
        • Couvelard A.
        • Monges G.
        • et al.
        Professional practices and diagnostic issues in neuroendocrine tumour pathology: results of a prospective one-year survey among French pathologists (the PRONET study).
        Neuroendocrinology. 2017; 105: 67-76
        • Chan E.S.
        • Alexander J.
        • Swanson P.E.
        • et al.
        PDX-1, CDX-2, TTF-1, and CK7: a reliable immunohistochemical panel for pancreatic neuroendocrine neoplasms.
        Am J Surg Pathol. 2012; 36: 737-743
        • Erickson L.A.
        • Papouchado B.
        • Dimashkieh H.
        • et al.
        CDX2 as a marker for neuroendocrine tumors of unknown primary sites.
        Endocr Pathol. 2004; 15: 247-252
        • Agaimy A.
        • Erlenbach-Wünsch K.
        • Konukiewitz B.
        • et al.
        ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin.
        Mod Pathol. 2013; 26: 995-1003
        • Czeczok T.W.
        • Stashek K.M.
        • Maxwell J.E.
        • et al.
        Clusterin in neuroendocrine epithelial neoplasms: absence of expression in a well-differentiated tumor suggests a jejunoileal origin.
        Appl Immunohistochem Mol Morphol. 2018; 26: 94-100
        • Klimstra D.S.
        • Modlin I.R.
        • Adsay N.V.
        • et al.
        Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set.
        Am J Surg Pathol. 2010; 34: 300-313
        • McCall C.M.
        • Shi C.
        • Cornish T.C.
        • et al.
        Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate.
        Am J Surg Pathol. 2013; 37: 1671-1677
        • van Velthuysen M.L.F.
        • Groen E.J.
        • van der Noort V.
        • et al.
        Grading of neuroendocrine neoplasms: mitoses and Ki-67 are both essential.
        Neuroendocrinology. 2014; 100: 221-227
        • Jannink I.
        • Risberg B.
        • van Diest P.
        • et al.
        Heterogeneity of mitotic activity in breast cancer.
        Histopathology. 1996; 29: 421-428
        • Verhoeven D.
        • Bourgeois N.
        • Derde M.
        • et al.
        Comparison of cell growth in different parts of breast cancers.
        Histopathology. 1990; 17: 505-509
        • Yang Z.
        • Tang L.H.
        • Klimstra D.S.
        Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification.
        Am J Surg Pathol. 2011; 35: 853-860
        • Couvelard A.
        • Deschamps L.
        • Ravaud P.
        • et al.
        Heterogeneity of tumor prognostic markers: a reproducibility study applied to liver metastases of pancreatic endocrine tumors.
        Mod Pathol. 2009; 22: 273-281
        • Cree I.A.
        • Tan P.H.
        • Travis W.D.
        • et al.
        Counting mitoses: SI(ze) matters.
        Mod Pathol. 2021; 34: 1651-1657
        • Yigit N.
        • Gunal A.
        • Kucukodaci Z.
        • et al.
        Are we counting mitoses correctly?.
        Ann Diagn Pathol. 2013; 17: 536-539
        • Facchetti F.
        A proposal for the adoption of a uniform metrical system for mitosis counting.
        Int J Surg Pathol. 2005; 13: 157-159
        • Tracht J.
        • Zhang K.
        • Peker D.
        Grading and prognostication of neuroendocrine tumors of the pancreas: a comparison study of Ki67 and PHH3.
        J Histochem Cytochem. 2017; 65: 399-405
        • Kim M.J.
        • Kwon M.J.
        • Kang H.S.
        • et al.
        Identification of phosphohistone H3 cutoff values corresponding to original WHO grades but distinguishable in well-differentiated gastrointestinal neuroendocrine tumors.
        Biomed Res Int. 2018; 2018: e1013640
        • Reid M.D.
        • Bagci P.
        • Ohike N.
        • et al.
        Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparative analysis of four counting methodologies.
        Mod Pathol. 2015; 28: 686-694
        • Tang L.
        • Mithat G.
        • Hedvat C.
        • et al.
        Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods.
        Am J Surg Pathol. 2012; 36: 1761-1770
        • Lea D.
        • Gudlaugsson E.G.
        • Skaland I.
        • et al.
        Digital image analysis of the proliferation markers Ki67 and phosphohistone H3 in gastroenteropancreatic neuroendocrine neoplasms: accuracy of grading compared with routine manual hot spot evaluation of the Ki67 index.
        Appl Immunohistochem Mol Morphol. 2021; 29: 499-505
        • Hacking S.M.
        • Sajjan S.
        • Lee L.
        • et al.
        Potential pitfalls in diagnostic digital image analysis: experience with Ki-67 and PHH3 in gastrointestinal neuroendocrine tumors.
        Pathol Res Pract. 2020; 216: 152753
        • Volynskaya Z.
        • Mete O.
        • Pakbaz S.
        • et al.
        Ki67 quantitative interpretation: insights using image analysis.
        J Pathol Inform. 2019; 10: 8
        • Walts A.E.
        • Ines D.
        • Marchevsky A.M.
        Limited role of Ki-67 proliferative index in predicting overall short-term survival in patients with typical and atypical pulmonary carcinoid tumors.
        Mod Pathol. 2012; 25: 1258-1264
        • Zahel T.
        • Krysa S.
        • Herpel E.
        • et al.
        Phenotyping of pulmonary carcinoids and a Ki-67-based grading approach.
        Virchows Arch. 2012; 460: 299-308
        • Grimaldi F.
        • Muser D.
        • Beltrami C.A.
        • et al.
        Partitioning of bronchopulmonary carcinoids in two different prognostic categories by Ki-67 score.
        Front Endocrinol (Lausanne). 2011; 2: 20
        • Skov B.
        • Holm B.
        • Erreboe A.
        • et al.
        ERCC1 and Ki67 in small-cell lung carcinoma and other neuroendocrine tumors of the lung: distribution and impact on survival.
        J Thorac Oncol. 2010; 5: 453-459
        • Aslan D.
        • Gulbahce H.
        • Pambuccian S.
        • et al.
        Ki-67 immunoreactivity in the differential diagnosis of pulmonary neuroendocrine neoplasms in specimens with extensive crush artifact.
        Am J Clin Pathol. 2005; 123: 874-878