Advertisement
Review Article| Volume 16, ISSUE 1, P167-176, March 2023

Download started.

Ok

Applications of Deep Learning in Endocrine Neoplasms

  • Siddhi Ramesh
    Affiliations
    Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA

    The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
    Search for articles by this author
  • James M. Dolezal
    Affiliations
    Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA

    The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
    Search for articles by this author
  • Alexander T. Pearson
    Correspondence
    Corresponding author.
    Affiliations
    Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, 5841 South Maryland Avenue, MC 2115, Chicago, IL 60637, USA

    University of Chicago Comprehensive Cancer Center, Chicago, IL, USA

    The University of Chicago Medicine & Biological Sciences, 5841 South Maryland Avenue, Chicago, IL, USA
    Search for articles by this author
Published:December 12, 2022DOI:https://doi.org/10.1016/j.path.2022.09.014

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tran K.A.
        • Kondrashova O.
        • Bradley A.
        • et al.
        Deep learning in cancer diagnosis, prognosis and treatment selection.
        Genome Med. 2021; 13: 152
        • Gulshan V.
        • Peng L.
        • Coram M.
        • et al.
        Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
        JAMA. 2016; 316: 2402-2410
        • Giudicessi J.R.
        • Schram M.
        • Bos J.M.
        • et al.
        Artificial intelligence–enabled assessment of the heart rate corrected qt interval using a mobile electrocardiogram device.
        Circulation. 2021; 143: 1274-1286
        • Ratner M.
        FDA backs clinician-free AI imaging diagnostic tools.
        Nat Biotechnol. 2018; 36: 673-674
        • Luchini C.
        • Pea A.
        • Scarpa A.
        Artificial intelligence in oncology: current applications and future perspectives.
        Br J Cancer. 2022; 126: 4-9
        • Kleppe A.
        • Skrede O.J.
        • De Raedt S.
        • et al.
        Designing deep learning studies in cancer diagnostics.
        Nat Rev Cancer. 2021; 21: 199-211
        • Chary M.A.
        • Manini A.F.
        • Boyer E.W.
        • et al.
        The Role and Promise of Artificial Intelligence in Medical Toxicology.
        J Med Toxicol. 2020; 16: 458-464
        • Rajkomar A.
        • Dean J.
        • Kohane I.
        Machine Learning in Medicine.
        N Engl J Med. 2019; 380: 1347-1358
        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436-444
        • Esteva A.
        • Robicquet A.
        • Ramsundar B.
        • et al.
        A guide to deep learning in healthcare.
        Nat Med. 2019; 25: 24-29
        • van der Laak J.
        • Litjens G.
        • Ciompi F.
        Deep learning in histopathology: the path to the clinic.
        Nat Med. 2021; 27: 775-784
        • Ahmad Z.
        • Rahim S.
        • Zubair M.
        • et al.
        Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review.
        Diagn Pathol. 2021; 16: 24
        • Lin Y.J.
        • Chao T.K.
        • Khalil M.A.
        • et al.
        Deep learning fast screening approach on cytological whole slides for thyroid cancer diagnosis.
        Cancers (Basel). 2021; 13: 3891
        • Dov D.
        • Kovalsky S.Z.
        • Assaad S.
        • et al.
        Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images.
        Med Image Anal. 2021; 67: 101814
        • Elliott Range D.D.
        • Dov D.
        • Kovalsky S.Z.
        • et al.
        Application of a machine learning algorithm to predict malignancy in thyroid cytopathology.
        Cancer Cytopathology. 2020; 128: 287-295
        • Sanyal P.
        • Mukherjee T.
        • Barui S.
        • et al.
        Artificial intelligence in cytopathology: A neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears.
        J Pathol Inform. 2018; 9: 43
        • Wang Y.
        • Guan Q.
        • Lao I.
        • et al.
        Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study.
        Ann Transl Med. 2019; 7: 468
        • El-Hossiny A.S.
        • Al-Atabany W.
        • Hassan O.
        • et al.
        Classification of Thyroid Carcinoma in Whole Slide Images Using Cascaded CNN.
        IEEE Access. 2021; 9: 88429-88438
        • Böhland M.
        • Tharun L.
        • Scherr T.
        • et al.
        Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis.
        PLoS One. 2021; 16: e0257635
        • Dolezal J.M.
        • Trzcinska A.
        • Liao C.Y.
        • et al.
        Deep learning prediction of BRAF-RAS gene expression signature identifies noninvasive follicular thyroid neoplasms with papillary-like nuclear features.
        Mod Pathol. 2021; 34: 862-874
        • Anand D.
        • Yashashwi K.
        • Kumar N.
        • et al.
        Weakly supervised learning on unannotated H&E-stained slides predicts BRAF mutation in thyroid cancer with high accuracy.
        J Pathol. 2021; 255: 232-242
        • Tsou P.
        • Wu C.J.
        Mapping driver mutations to histopathological subtypes in papillary thyroid carcinoma: applying a deep convolutional neural network.
        J Clin Med. 2019; 8: 1675
        • Fu Y.
        • Jung A.W.
        • Torne R.V.
        • et al.
        Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
        Nat Cancer. 2020; 1: 800-810
      1. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. ; 2009:248-255. doi:10.1109/CVPR.2009.5206848.

      2. Cancer of the pancreas - cancer stat facts. SEER.
        (Available at:) (Accessed April 5, 2022)
        • Kenner B.
        • Chari S.T.
        • Kelsen D.
        • et al.
        Artificial intelligence and early detection of pancreatic cancer.
        Pancreas. 2021; 50: 251-279
        • Fu H.
        • Mi W.
        • Pan B.
        • et al.
        Automatic pancreatic ductal adenocarcinoma detection in whole slide images using deep convolutional neural networks.
        Front Oncol. 2021; 11: 665929
        • Wu W.
        • Liu X.
        • Hamilton R.B.
        • et al.
        Graph Convolutional Neural Networks for Histological Classification of Pancreatic Cancer.
        . 2022; 28 (2022.01.26.22269832)https://doi.org/10.1101/2022.01.26.22269832
      3. Chang YH, Thibault G, Madin O, et al. Deep learning based Nucleus Classification in pancreas histological images. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). ; 2017:672-675. doi:10.1109/EMBC.2017.8036914.

        • Kriegsmann M.
        • Kriegsmann K.
        • Steinbuss G.
        • et al.
        Deep learning in pancreatic tissue: identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma.
        Int J Mol Sci. 2021; 22: 5385
        • Naito Y.
        • Tsuneki M.
        • Fukushima N.
        • et al.
        A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy.
        Sci Rep. 2021; 11: 8454
        • Dasari A.
        • Shen C.
        • Halperin D.
        • et al.
        Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States.
        JAMA Oncol. 2017; 3: 1335-1342
        • Wallace P.W.
        • Conrad C.
        • Brückmann S.
        • et al.
        Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas.
        J Pathol. 2020; 251: 378-387
        • Pantelis A.G.
        • Panagopoulou P.A.
        • Lapatsanis D.P.
        Artificial intelligence and machine learning in the diagnosis and management of gastroenteropancreatic neuroendocrine neoplasms—a scoping review.
        Diagnostics. 2022; 12: 874
        • Redemann J.
        • Schultz F.A.
        • Martinez C.
        • et al.
        Comparing deep learning and immunohistochemistry in determining the site of origin for well-differentiated neuroendocrine tumors.
        J Pathol Inform. 2020; 11: 32
        • Govind D.
        • Jen K.Y.
        • Matsukuma K.
        • et al.
        Improving the accuracy of gastrointestinal neuroendocrine tumor grading with deep learning.
        Sci Rep. 2020; 10: 11064
        • Matsukuma K.
        • Olson K.A.
        • Gui D.
        • et al.
        Synaptophysin-Ki67 double stain: a novel technique that improves interobserver agreement in the grading of well-differentiated gastrointestinal neuroendocrine tumors.
        Mod Pathol. 2017; 30: 620-629
        • Chen C.
        • Hu Y.
        • Lyu L.
        • et al.
        Incidence, demographics, and survival of patients with primary pituitary tumors: a SEER database study in 2004–2016.
        Sci Rep. 2021; 11: 15155
        • Correa P.
        • Chen V.W.
        Endocrine gland cancer.
        Cancer. 1995; 75: 338-352
        • Thomasian N.M.
        • Kamel I.R.
        • Bai H.X.
        Machine intelligence in non-invasive endocrine cancer diagnostics.
        Nat Rev Endocrinol. 2022; 18: 81-95
        • Dum D.
        • Henke T.L.C.
        • Mandelkow T.
        • et al.
        Semi-automated validation and quantification of CTLA-4 in 90 different tumor entities using multiple antibodies and artificial intelligence.
        Lab Invest. 2022; : 1-8https://doi.org/10.1038/s41374-022-00728-4
        • Hu P.
        • Liu Q.
        • Deng G.
        • et al.
        The prognostic value of cytotoxic T-lymphocyte antigen 4 in cancers: a systematic review and meta-analysis.
        Sci Rep. 2017; 7: 42913
        • Kochanny S.
        • Pearson A.
        Academics as leaders in the cancer artificial intelligence revolution.
        Cancer. 2020; 127https://doi.org/10.1002/cncr.33284
        • Sandfort V.
        • Yan K.
        • Pickhardt P.J.
        • et al.
        Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
        Sci Rep. 2019; 9: 16884
      4. Mikołajczyk A, Grochowski M. Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW). ; 2018:117-122. doi:10.1109/IIPHDW.2018.8388338.

        • Wei J.
        • Suriawinata A.
        • Vaickus L.
        • et al.
        Generative Image Translation for Data Augmentation in Colorectal Histopathology Images.
        Proc Mach Learn Res. 2019; 116: 10-24
        • Howard F.M.
        • Dolezal J.
        • Kochanny S.
        • et al.
        The impact of site-specific digital histology signatures on deep learning model accuracy and bias.
        Nat Commun. 2021; 12: 4423
        • Collins G.S.
        • Dhiman P.
        • Navarro C.L.A.
        • et al.
        Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence.
        BMJ Open. 2021; 11: e048008