Advertisement
Review Article|Articles in Press

Molecular Diagnostics of Plasma Cell Neoplasms

Published:March 10, 2023DOI:https://doi.org/10.1016/j.path.2023.01.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Swerdlow S.H.
        • Campo E.
        • Harris N.L.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues.
        4th edition. IARC, Lyon2017
        • Manier S.
        • Salem K.Z.
        • Park J.
        • et al.
        Genomic complexity of multiple myeloma and its clinical implications.
        Nat Rev Clin Oncol. 2017; 14: 100-113
        • Fitzpatrick M.J.
        • Nardi V.
        • Sohani A.R.
        Plasma cell myeloma: role of histopathology, immunophenotyping, and genetic testing.
        Skeletal Radiol. 2022; 51: 17-30
        • Kumar S.
        • Paiva B.
        • Anderson K.C.
        • et al.
        International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma.
        Lancet Oncol. 2016; 17: e328-e346
        • Saxe D.
        • Seo E.J.
        • Bergeron M.B.
        • et al.
        Recent advances in cytogenetic characterization of multiple myeloma.
        Int J Lab Hematol. 2019; 41: 5-14
        • Debes-Marun C.S.
        • Dewald G.W.
        • Bryant S.
        • et al.
        Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma.
        Leukemia. 2003; 17: 427-436
        • Hebraud B.
        • Magrangeas F.
        • Cleynen A.
        • et al.
        Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: The IFM experience.
        Blood. 2015; 125: 2095-2100
        • Palumbo A.
        • Avet-Loiseau H.
        • Oliva S.
        • et al.
        Revised international staging system for multiple myeloma: A report from international myeloma working group.
        J Clin Oncol. 2015; 33: 2863-2869
        • Vu T.
        • Gonsalves W.
        • Kumar S.
        • et al.
        Characteristics of exceptional responders to lenalidomide- based therapy in multiple myeloma.
        Blood Cancer J. 2015; : e363
        • Maura F.
        • Rustad E.H.
        • Boyle E.M.
        • et al.
        Reconstructing the evolutionary history of multiple myeloma.
        Best Pract Res Clin Haematol. 2020; 33: 101145
        • Maura F.
        • Bolli N.
        • Angelopoulos N.
        • et al.
        Genomic landscape and chronological reconstruction of driver events in multiple myeloma.
        Nat Commun. 2019; 10: 1-12
        • Jannes Neuse C.
        • Lomas O.
        • Schliemann C.
        • et al.
        Genome instability in multiple myeloma.
        Leukemia. 2020; 34: 2887-2897
        • Pawlyn C.
        • Melchor L.
        • Murison A.
        • et al.
        Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations.
        Blood. 2015; 125: 831-840
        • Kumar S.K.
        • Rajkumar S.V.
        The multiple myelomas - Current concepts in cytogenetic classification and therapy.
        Nat Rev Clin Oncol. 2018; 15: 409-421
        • López-Corral L.
        • Mateos M.V.
        • Corchete L.A.
        • et al.
        Genomic analysis of high-risk smoldering multiple myeloma.
        Haematologica. 2012; 97: 1439-1443
        • Fonseca R.
        • Bailey R.J.
        • Ahmann G.J.
        • et al.
        Genomic abnormalities in monoclonal gammopathy of undetermined significance.
        Blood. 2002; 100: 1417-1424
        • Rajkumar S.V.
        • Gupta V.
        • Fonseca R.
        • et al.
        Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma.
        Leukemia. 2013; 27: 1738-1744
        • Barilà G.
        • Bonaldi L.
        • Grassi A.
        • et al.
        Identification of the true hyperdiploid multiple myeloma subset by combining conventional karyotyping and FISH analysis.
        Blood Cancer J. 2020; 10: 1-5
        • Gasparetto C.
        • Jagannath S.
        • Rifkin R.M.
        • et al.
        Effect of t (11;14) Abnormality on outcomes of patients with newly diagnosed multiple myeloma in the connect MM registry.
        Clin Lymphoma, Myeloma Leuk. 2022; 22: 149-157
        • Foltz S.M.
        • Gao Q.
        • Yoon C.J.
        • et al.
        Evolution and structure of clinically relevant gene fusions in multiple myeloma.
        Nat Commun. 2020; 11: 1-12
        • Zhan F.
        • Huang Y.
        • Colla S.
        • et al.
        The molecular classification of multiple myeloma.
        Blood. 2006; 108: 2020-2028
        • Pawlyn C.
        • Davies F.E.
        Toward personalized treatment in multiple myeloma based on molecular characteristics.
        Blood. 2019; 133: 660-675
        • Misund K.
        • Keane N.
        • Stein C.K.
        • et al.
        MYC dysregulation in the progression of multiple myeloma.
        Leukemia. 2020; 34: 322-326
      1. Walker B.A., Wardell C.P., Murison A., et al., APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma, Nat Commun, 6, 2015, 1-15.

        • Walker B.A.
        • Wardell C.P.
        • Brioli A.
        • et al.
        Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients.
        Blood Cancer J. 2014; 4: e191-e197
        • Sharma N.
        • Smadbeck J.B.
        • Abdallah N.
        • et al.
        The prognostic role of MYC structural variants identified by NGS and FISH in multiple myeloma.
        Clin Cancer Res. 2021; 27: 5430-5439
        • Walker B.A.
        • Leone P.E.
        • Chiecchio L.
        • et al.
        A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value.
        Blood. 2010; 116: 56-65
        • Avet-Loiseau H.
        • Daviet A.
        • Saunier S.
        • et al.
        Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13.
        Br J Haematol. 2000; 111: 1116-1117
        • Avet-Loiseau H.
        • Attal M.
        • Moreau P.
        • et al.
        Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myélome.
        Blood. 2007; 109: 3489-3495
        • Walker B.A.
        • Mavrommatis K.
        • Wardell C.P.
        • et al.
        A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis.
        Leukemia. 2019; 33: 159-170
        • Bustoros M.
        • Sklavenitis-Pistofidis R.
        • Park J.
        • et al.
        Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression.
        J Clin Oncol. 2020; 38: 2380-2389
        • Maganti H.B.
        • Jrade H.
        • Cafariello C.
        • et al.
        Targeting the MTF2–MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy.
        Cancer Discov. 2018; 8: 1376-1389
        • Walker B.A.
        • Mavrommatis K.
        • Wardell C.P.
        • et al.
        Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma.
        Blood. 2018; 132: 587-597
      2. Bolli N., Avet-Loiseau H., Wedge D.C., et al., Heterogeneity of genomic evolution and mutational profiles in multiple myeloma, Nat Commun, 5, 2014, 1–16.

        • Lohr J.G.
        • Stojanov P.
        • Carter S.L.
        • et al.
        Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy.
        Cancer Cell. 2014; 25: 91-101
        • Chapman M.A.
        • Lawrence M.S.
        • Keats J.J.
        • et al.
        Initial genome sequencing and analysis of multiple myeloma.
        Nature. 2011; 471: 467-472
        • Moreau P.
        • Kumar S.
        • San Miguel J.
        • et al.
        Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group.
        Lancet Oncol. 2021; 22: E105-E118
        • Perrot A.
        • Lauwers-Cances V.
        • Corre J.
        • et al.
        Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma.
        Blood. 2018; 132: 2456-2464
        • Sarasquete M.E.
        • Garcia-Sanz R.
        • Gonzalez D.
        • et al.
        Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry.
        Haematologica. 2005; 90: 1365-1372
        • Flores-Montero J.
        • Sanoja-Flores L.
        • Paiva B.
        • et al.
        Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma.
        Leukemia. 2017; 31: 2094-2103
        • Lahuerta J.J.
        • Paiva B.
        • Vidriales M.B.
        • et al.
        Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials.
        J Clin Oncol. 2017; 35: 2900-2910
        • Paiva B.
        • Vidriales M.B.
        • Cerveró J.
        • et al.
        Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation.
        Blood. 2008; 112: 4017-4023
        • Paiva B.
        • Martinez-Lopez J.
        • Vidriales M.B.
        • et al.
        Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma.
        J Clin Oncol. 2011; 29: 1627-1633
        • Martinez-Lopez J.
        • Lahuerta J.J.
        • Pepin F.
        • et al.
        Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma.
        Blood. 2014; 123: 3073-3079
        • Puig N.
        • Sarasquete M.E.
        • Balanzategui A.
        • et al.
        Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry.
        Leukemia. 2014; 28: 391-397
        • Yao Q.
        • Bai Y.
        • Kumar S.
        • et al.
        Minimal residual disease detection by next-generation sequencing in multiple myeloma: a comparison with real-time quantitative PCR.
        Front Oncol. 2021; 10: 1-5
        • Burgos L.
        • Puig N.
        • Cedena M.T.
        • et al.
        Measurable residual disease in multiple myeloma: ready for clinical practice?.
        J Hematol Oncol. 2020; 13: 1-8
        • Pugh T.J.
        Circulating tumour DNA for detecting minimal residual disease in multiple myeloma.
        Semin Hematol. 2018; 55: 38-40
        • Manier S.
        • Park J.
        • Capelletti M.
        • et al.
        Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma.
        Nat Commun. 2018; 9: 1-11
        • Waldschmidt J.M.
        • Yee A.J.
        • Vijaykumar T.
        • et al.
        Cell-free DNA for the detection of emerging treatment failure in relapsed/refractory multiple myeloma.
        Leuk. 2022; 36 (2021 364): 1078-1087
        • Ye X.
        • Li W.
        • Zhang L.
        • et al.
        Clinical significance of circulating cell-free DNA detection in multiple myeloma: a meta-analysis.
        Front Oncol. 2022; 12: 1-8
        • Mazzotti Ć.
        • Buisson L.
        • Maheo S.
        • et al.
        Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow.
        Blood Adv. 2018; 2: 2811-2813
        • Vrabel D.
        • Sedlarikova L.
        • Besse L.
        • et al.
        Dynamics of tumor-specific cfDNA in response to therapy in multiple myeloma patients.
        Eur J Haematol. 2020; 104: 190-197
        • Biancon G.
        • Gimondi S.
        • Vendramin A.
        • et al.
        Noninvasive molecular monitoring in multiple myeloma patients using cell-free tumor DNA: a pilot study.
        J Mol Diagnostics. 2018; 20: 859-870
        • Garcés J.J.
        • Bretones G.
        • Burgos L.
        • et al.
        Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma.
        Leukemia. 2020; 34: 3007-3018
        • Sanoja-Flores L.
        • Flores-Montero J.
        • Garcés J.J.
        • et al.
        Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC).
        Blood Cancer J. 2018; 8https://doi.org/10.1038/s41408-018-0153-9
        • Garcés J.J.
        • Simicek M.
        • Vicari M.
        • et al.
        Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination.
        Leukemia. 2020; 34: 589-603
        • Puig N.
        • Contreras M.-T.
        • Agulló C.
        • et al.
        Mass spectrometry vs immunofixation for treatment monitoring in multiple myeloma.
        Blood Adv. 2022; 6: 3234-3239
        • Langerhorst P.
        • Noori S.
        • Zajec M.
        • et al.
        Multiple myeloma minimal residual disease detection: targeted mass spectrometry in blood vs next-generation sequencing in bone marrow.
        Clin Chem. 2021; 67: 1689-1698
        • Derman B.A.
        • Stefka A.T.
        • Jiang K.
        • et al.
        Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation.
        Blood Cancer J. 2021; 11: 2-5