Advertisement
Review Article|Articles in Press

Diagnostic Flow Cytometry in the Era of Targeted Therapies

Lessons from Therapeutic Monoclonal Antibodies and Chimeric Antigen Receptor T-cell Adoptive Immunotherapy
Published:March 08, 2023DOI:https://doi.org/10.1016/j.path.2023.01.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaplon H.
        • Reichert J.M.
        Antibodies to watch in 2019.
        MAbs. 2019; 11: 219-238
        • Kaplon H.
        • Chenoweth A.
        • Crescioli S.
        • et al.
        Antibodies to watch in 2022.
        MAbs. 2022; 14: 2014296
        • Castelli M.S.
        • McGonigle P.
        • Hornby P.J.
        The pharmacology and therapeutic applications of monoclonal antibodies.
        Pharmacol Res Perspect. 2019; 7: e00535
        • Leader B.
        • Baca Q.J.
        • Golan D.E.
        Protein therapeutics: a summary and pharmacological classification.
        Nat Rev Drug Discov. 2008; 7: 21-39
        • Golay J.
        • Introna M.
        Mechanism of action of therapeutic monoclonal antibodies: promises and pitfalls of in vitro and in vivo assays.
        Arch Biochem Biophys. 2012; 526: 146-153
        • Salles G.
        • Barrett M.
        • Foa R.
        • et al.
        Rituximab in B-Cell hematologic malignancies: a review of 20 years of clinical experience.
        Adv Ther. 2017; 34: 2232-2273
        • Goebeler M.E.
        • Bargou R.
        Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy.
        Leuk Lymphoma. 2016; 57: 1021-1032
      1. Mocquot P., Mossazadeh Y., Lapierre L., et al., The pharmacology of blinatumomab: state of the art on pharmacodynamics, pharmacokinetics, adverse drug reactions and evaluation in clinical trials, J Clin Pharm Ther, 47 (9), 2022, 1337-1351.

        • Sadelain M.
        • Brentjens R.
        • Riviere I.
        The basic principles of chimeric antigen receptor design.
        Cancer Discov. 2013; 3: 388-398
        • Jacoby E.
        • Nguyen S.M.
        • Fountaine T.J.
        • et al.
        CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity.
        Nat Commun. 2016; 7: 12320
        • June C.H.
        • O'Connor R.S.
        • Kawalekar O.U.
        • et al.
        CAR T cell immunotherapy for human cancer.
        Science. 2018; 359: 1361-1365
        • Maude S.L.
        • Teachey D.T.
        • Porter D.L.
        • et al.
        CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia.
        Blood. 2015; 125: 4017-4023
        • Tasian S.K.
        • Gardner R.A.
        CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL).
        Ther Adv Hematol. 2015; 6: 228-241
        • Vitale C.
        • Strati P.
        CAR T-cell therapy for B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: clinical trials and real-world experiences.
        Front Oncol. 2020; 10: 849
        • Schuster S.J.
        • Tam C.S.
        • Borchmann P.
        • et al.
        Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study.
        Lancet Oncol. 2021; 22: 1403-1415
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Kochenderfer J.N.
        • Dudley M.E.
        • Kassim S.H.
        • et al.
        Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor.
        J Clin Oncol. 2015; 33: 540-549
        • Fry T.J.
        • Shah N.N.
        • Orentas R.J.
        • et al.
        CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy.
        Nat Med. 2018; 24: 20-28
        • Ali S.A.
        • Shi V.
        • Maric I.
        • et al.
        T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma.
        Blood. 2016; 128: 1688-1700
        • Lee D.W.
        • Kochenderfer J.N.
        • Stetler-Stevenson M.
        • et al.
        T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.
        Lancet. 2015; 385: 517-528
        • Gardner R.A.
        • Finney O.
        • Annesley C.
        • et al.
        Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults.
        Blood. 2017; 129: 3322-3331
        • Sotillo E.
        • Barrett D.M.
        • Black K.L.
        • et al.
        Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy.
        Cancer Discov. 2015; 5: 1282-1295
        • Stroncek D.F.
        • Lee D.W.
        • Ren J.
        • et al.
        Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells.
        J Transl Med. 2017; 15: 59
        • Oberle A.
        • Brandt A.
        • Alawi M.
        • et al.
        Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection.
        Haematologica. 2017; 102: e368-e370
        • Courville E.L.
        • Yohe S.
        • Shivers P.
        • et al.
        VS38 identifies myeloma cells with dim CD38 expression and plasma cells following daratumumab therapy, which interferes with CD38 detection for 4 to 6 months.
        Am J Clin Pathol. 2020; 153: 221-228
        • Jourdan M.
        • Ferlin M.
        • Legouffe E.
        • et al.
        The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells.
        Br J Haematol. 1998; 100: 637-646
        • Flores-Montero J.
        • Sanoja-Flores L.
        • Paiva B.
        • et al.
        Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma.
        Leukemia. 2017; 31: 2094-2103
        • Mizuta S.
        • Kawata T.
        • Kawabata H.
        • et al.
        VS38 as a promising CD38 substitute antibody for flow cytometric detection of plasma cells in the daratumumab era.
        Int J Hematol. 2019; 110: 322-330
        • Broijl A.
        • de Jong A.C.M.
        • van Duin M.
        • et al.
        VS38c and CD38-multiepitope antibodies provide highly comparable minimal residual disease data in patients with multiple myeloma.
        Am J Clin Pathol. 2022; 157: 494-497
        • Muccio V.E.
        • Saraci E.
        • Gilestro M.
        • et al.
        Multiple myeloma: New surface antigens for the characterization of plasma cells in the era of novel agents.
        Cytometry B Clin Cytom. 2016; 90: 81-90
        • Park J.H.
        • Riviere I.
        • Gonen M.
        • et al.
        Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia.
        N Engl J Med. 2018; 378: 449-459
        • Cherian S.
        • Miller V.
        • McCullouch V.
        • et al.
        A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy.
        Cytometry B Clin Cytom. 2018; 94: 112-120
        • Cherian S.
        • Stetler-Stevenson M.
        Flow Cytometric monitoring for residual disease in B lymphoblastic leukemia post T cell engaging targeted therapies.
        Curr Protoc Cytom. 2018; 86: e44
        • Verbeek M.W.C.
        • Buracchi C.
        • Laqua A.
        • et al.
        Flow cytometric minimal residual disease assessment in B-cell precursor acute lymphoblastic leukaemia patients treated with CD19-targeted therapies - a EuroFlow study.
        Br J Haematol. 2022; 197: 76-81
        • Pan J.
        • Niu Q.
        • Deng B.
        • et al.
        CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia.
        Leukemia. 2019; 33: 2854-2866
        • Hrusak O.
        • Porwit-MacDonald A.
        Antigen expression patterns reflecting genotype of acute leukemias.
        Leukemia. 2002; 16: 1233-1258
        • Fischer J.
        • Paret C.
        • El Malki K.
        • et al.
        CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis.
        J Immunother. 2017; 40: 187-195
        • Braig F.
        • Brandt A.
        • Goebeler M.
        • et al.
        Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking.
        Blood. 2017; 129: 100-104
        • Shah N.N.
        • Fry T.J.
        Mechanisms of resistance to CAR T cell therapy.
        Nat Rev Clin Oncol. 2019; 16: 372-385
      2. Kurzer J.H. and Weinberg O.K., To B- or not to B-: a review of lineage switched acute leukemia, Int J Lab Hematol, 44 Suppl 1, 2022, 64-70.

      3. Lamble A., Myers R.M., Taraseviciute A., et al., Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells, Blood Adv, 7 (4),2022, 575-585.

        • Novakova M.
        • Zaliova M.
        • Fiser K.
        • et al.
        DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch.
        Haematologica. 2021; 106: 2066-2075
        • Oberley M.J.
        • Gaynon P.S.
        • Bhojwani D.
        • et al.
        Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia.
        Pediatr Blood Cancer. 2018; 65: e27265
        • Hirabayashi S.
        • Butler E.R.
        • Ohki K.
        • et al.
        Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group.
        Leukemia. 2021; 35: 3272-3277
        • Zhou T.
        • Wang H.W.
        Antigen loss after targeted immunotherapy in hematological malignancies.
        Clin Lab Med. 2021; 41: 341-357
        • Murthy H.
        • Iqbal M.
        • Chavez J.C.
        • et al.
        Cytokine release syndrome: current perspectives.
        ImmunoTargets Ther. 2019; 8: 43-52
        • Cohen A.
        • Petsche D.
        • Grunberger T.
        • et al.
        Interleukin 6 induces myeloid differentiation of a human biphenotypic leukemic cell line.
        Leuk Res. 1992; 16: 751-760
        • Jiang X.Y.
        • Luider J.
        • Shameli A.
        Artifactual kappa light chain restriction of marrow hematogones: a potential diagnostic pitfall in minimal residual disease assessment of plasma cell myeloma patients on daratumumab.
        Cytometry B Clin Cytom. 2020; 98: 68-74
        • Chen P.P.
        • Tormey C.A.
        • Eisenbarth S.C.
        • et al.
        False-positive light chain clonal restriction by flow cytometry in patients treated with alemtuzumab: potential pitfalls for the misdiagnosis of B-cell neoplasms.
        Am J Clin Pathol. 2019; 151: 154-163
        • Cruz N.M.
        • Sugita M.
        • Ewing-Crystal N.
        • et al.
        Selection and characterization of antibody clones are critical for accurate flow cytometry-based monitoring of CD123 in acute myeloid leukemia.
        Leuk Lymphoma. 2018; 59: 978-982