Advertisement
Review Article|Articles in Press

Diagnostic, Prognostic, and Predictive Role of Next-Generation Sequencing in Mature Lymphoid Neoplasms

Published:March 15, 2023DOI:https://doi.org/10.1016/j.path.2023.01.010

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgical Pathology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alaggio R.
        • Amador C.
        • Anagnostopoulos I.
        • et al.
        The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms.
        Leukemia. 2022; 36: 1720-1748
        • Slack G.W.
        • Gascoyne R.D.
        Next-generation sequencing discoveries in lymphoma.
        Adv Anat Pathol. 2013; 20: 110-116
        • Vega F.
        • Amador C.
        • Chadburn A.
        • et al.
        Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up.
        Mod Pathol. 2022; 35: 306-318
        • Rosenquist R.
        • Beà S.
        • Du M.Q.
        • et al.
        Genetic landscape and deregulated pathways in B-cell lymphoid malignancies.
        J Intern Med. 2017; 282: 371-394
        • Treon S.P.
        • Xu L.
        • Yang G.
        • et al.
        MYD88 L265P somatic mutation in Waldenström's macroglobulinemia.
        N Engl J Med. 2012; 367: 826-833
        • Poulain S.
        • Roumier C.
        • Decambron A.
        • et al.
        MYD88 L265P mutation in Waldenstrom macroglobulinemia.
        Blood. 2013; 121: 4504-4511
        • Hamadeh F.
        • MacNamara S.P.
        • Aguilera N.S.
        • et al.
        MYD88 L265P mutation analysis helps define nodal lymphoplasmacytic lymphoma.
        Mod Pathol. 2015; 28: 564-574
        • Hunter Z.R.
        • Xu L.
        • Yang G.
        • et al.
        The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis.
        Blood. 2014; 123: 1637-1646
        • Varettoni M.
        • Boveri E.
        • Zibellini S.
        • et al.
        Clinical and molecular characteristics of lymphoplasmacytic lymphoma not associated with an IgM monoclonal protein: A multicentric study of the Rete Ematologica Lombarda (REL) network.
        Am J Hematol. 2019; 94: 1193-1199
        • Jiménez C.
        • Sebastián E.
        • Chillón M.C.
        • et al.
        MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström's macroglobulinemia.
        Leukemia. 2013; 27: 1722-1728
        • Treon S.P.
        • Xu L.
        • Guerrera M.L.
        • et al.
        Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies.
        J Clin Oncol. 2020; 38: 1198-1208
        • Hunter Z.R.
        • Xu L.
        • Tsakmaklis N.
        • et al.
        Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia.
        Blood Adv. 2018; 2: 2937-2946
        • Wang Y.
        • Gali V.L.
        • Xu-Monette Z.Y.
        • et al.
        Molecular and genetic biomarkers implemented from next-generation sequencing provide treatment insights in clinical practice for Waldenström macroglobulinemia.
        Neoplasia. 2021; 23: 361-374
        • Woyach J.A.
        • Furman R.R.
        • Liu T.M.
        • et al.
        Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib.
        N Engl J Med. 2014; 370: 2286-2294
        • Kofides A.
        • Hunter Z.R.
        • Xu L.
        • et al.
        Diagnostic Next-generation Sequencing Frequently Fails to Detect MYD88(L265P) in Waldenström Macroglobulinemia.
        Hemasphere. 2021; 5: e624
        • Okosun J.
        • Bödör C.
        • Wang J.
        • et al.
        Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma.
        Nat Genet. 2014; 46: 176-181
        • Morin R.D.
        • Johnson N.A.
        • Severson T.M.
        • et al.
        Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin.
        Nat Genet. 2010; 42: 181-185
        • Pasqualucci L.
        • Dominguez-Sola D.
        • Chiarenza A.
        • et al.
        Inactivating mutations of acetyltransferase genes in B-cell lymphoma.
        Nature. 2011; 471: 189-195
        • Bödör C.
        • Grossmann V.
        • Popov N.
        • et al.
        EZH2 mutations are frequent and represent an early event in follicular lymphoma.
        Blood. 2013; 122: 3165-3168
        • Li H.
        • Kaminski M.S.
        • Li Y.
        • et al.
        Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma.
        Blood. 2014; 123: 1487-1498
        • Huet S.
        • Sujobert P.
        • Salles G.
        From genetics to the clinic: a translational perspective on follicular lymphoma.
        Nat Rev Cancer. 2018; 18: 224-239
        • Pastore A.
        • Jurinovic V.
        • Kridel R.
        • et al.
        Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry.
        Lancet Oncol. 2015; 16: 1111-1122
        • Jurinovic V.
        • Kridel R.
        • Staiger A.M.
        • et al.
        Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy.
        Blood. 2016; 128: 1112-1120
        • Morschhauser F.
        • Tilly H.
        • Chaidos A.
        • et al.
        Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial.
        Lancet Oncol. 2020; 21: 1433-1442
        • Straining R.
        • Eighmy W.
        Tazemetostat: EZH2 Inhibitor.
        J Adv Pract Oncol. 2022; 13: 158-163
        • Kridel R.
        • Meissner B.
        • Rogic S.
        • et al.
        Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma.
        Blood. 2012; 119: 1963-1971
        • Beà S.
        • Valdés-Mas R.
        • Navarro A.
        • et al.
        Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.
        Proc Natl Acad Sci U S A. 2013; 110: 18250-18255
        • Meissner B.
        • Kridel R.
        • Lim R.S.
        • et al.
        The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma.
        Blood. 2013; 121: 3161-3164
        • Zhang J.
        • Jima D.
        • Moffitt A.B.
        • et al.
        The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells.
        Blood. May 8 2014; 123: 2988-2996
        • Sakhdari A.
        • Ok C.Y.
        • Patel K.P.
        • et al.
        TP53 mutations are common in mantle cell lymphoma, including the indolent leukemic non-nodal variant.
        Ann Diagn Pathol. 2019; 41: 38-42
        • Hill H.A.
        • Qi X.
        • Jain P.
        • et al.
        Genetic mutations and features of mantle cell lymphoma: a systematic review and meta-analysis.
        Blood Adv. 2020; 4: 2927-2938
        • Pararajalingam P.
        • Coyle K.M.
        • Arthur S.E.
        • et al.
        Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing.
        Blood. 2020; 136: 572-584
        • Eskelund C.W.
        • Dahl C.
        • Hansen J.W.
        • et al.
        TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy.
        Blood. 2017; 130: 1903-1910
        • Silkenstedt E.
        • Linton K.
        • Dreyling M.
        Mantle cell lymphoma - advances in molecular biology, prognostication and treatment approaches.
        Br J Haematol. Oct 2021; 195: 162-173
        • Delfau-Larue M.H.
        • Klapper W.
        • Berger F.
        • et al.
        High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma.
        Blood. 2015; 126: 604-611
        • Rahal R.
        • Frick M.
        • Romero R.
        • et al.
        Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma.
        Nat Med. 2014; 20: 87-92
        • Wu C.
        • de Miranda N.F.
        • Chen L.
        • et al.
        Genetic heterogeneity in primary and relapsed mantle cell lymphomas: Impact of recurrent CARD11 mutations.
        Oncotarget. Jun 21 2016; 7: 38180-38190
        • Mohanty A.
        • Sandoval N.
        • Das M.
        • et al.
        CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma.
        Oncotarget. 2016; 7: 73558-73572
        • Rosenwald A.
        • Wright G.
        • Chan W.C.
        • et al.
        The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.
        N Engl J Med. 2002; 346: 1937-1947
        • Hans C.P.
        • Weisenburger D.D.
        • Greiner T.C.
        • et al.
        Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray.
        Blood. 2004; 103: 275-282
        • Compagno M.
        • Lim W.K.
        • Grunn A.
        • et al.
        Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma.
        Nature. Jun 4 2009; 459: 717-721
        • Morin R.D.
        • Mendez-Lago M.
        • Mungall A.J.
        • et al.
        Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.
        Nature. Jul 27 2011; 476: 298-303
        • Pasqualucci L.
        • Trifonov V.
        • Fabbri G.
        • et al.
        Analysis of the coding genome of diffuse large B-cell lymphoma.
        Nat Genet. 2011; 43: 830-837
        • Pasqualucci L.
        • Dalla-Favera R.
        The genetic landscape of diffuse large B-cell lymphoma.
        Semin Hematol. 2015; 52: 67-76
        • Schmitz R.
        • Wright G.W.
        • Huang D.W.
        • et al.
        Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma.
        N Engl J Med. 2018; 378: 1396-1407
        • Chapuy B.
        • Stewart C.
        • Dunford A.J.
        • et al.
        Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.
        Nat Med. 2018; 24: 679-690
        • Lacy S.E.
        • Barrans S.L.
        • Beer P.A.
        • et al.
        Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report.
        Blood. 2020; 135: 1759-1771
        • Wright G.W.
        • Huang D.W.
        • Phelan J.D.
        • et al.
        A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications.
        Cancer Cell. 2020; 37: 551-568.e14
        • Morin R.D.
        • Arthur S.E.
        • Hodson D.J.
        Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes?.
        Br J Haematol. 2022; 196: 814-829
        • Ngo V.N.
        • Young R.M.
        • Schmitz R.
        • et al.
        Oncogenically active MYD88 mutations in human lymphoma.
        Nature. 2011; 470: 115-119
        • Bohers E.
        • Mareschal S.
        • Bouzelfen A.
        • et al.
        Targetable activating mutations are very frequent in GCB and ABC diffuse large B-cell lymphoma..
        Genes Chromosomes Cancer. 2014; 53: 144-153
        • Trinh D.L.
        • Scott D.W.
        • Morin R.D.
        • et al.
        Analysis of FOXO1 mutations in diffuse large B-cell lymphoma.
        Blood. 2013; 121: 3666-3674
        • Young R.M.
        • Staudt L.M.
        Targeting pathological B cell receptor signalling in lymphoid malignancies.
        Nat Rev Drug Discov. 2013; 12: 229-243
        • Crescenzo R.
        • Abate F.
        • Lasorsa E.
        • et al.
        Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.
        Cancer Cell. Apr 13 2015; 27: 516-532
        • Lobello C.
        • Tichy B.
        • Bystry V.
        • et al.
        STAT3 and TP53 mutations associate with poor prognosis in anaplastic large cell lymphoma.
        Leukemia. 2021; 35: 1500-1505
        • Luchtel R.A.
        • Zimmermann M.T.
        • Hu G.
        • et al.
        Recurrent MSC (E116K) mutations in ALK-negative anaplastic large cell lymphoma.
        Blood. 2019; 133: 2776-2789
        • Lovisa F.
        • Cozza G.
        • Cristiani A.
        • et al.
        ALK kinase domain mutations in primary anaplastic large cell lymphoma: consequences on NPM-ALK activity and sensitivity to tyrosine kinase inhibitors.
        PLoS One. 2015; 10: e0121378
        • Larose H.
        • Prokoph N.
        • Matthews J.D.
        • et al.
        Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target.
        Haematologica. Jun 1 2021; 106: 1693-1704
        • Vallois D.
        • Dobay M.P.
        • Morin R.D.
        • et al.
        Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas.
        Blood. 2016; 128: 1490-1502
        • Dobay M.P.
        • Lemonnier F.
        • Missiaglia E.
        • et al.
        Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin.
        Haematologica. 2017; 102: e148-e151
        • Steinhilber J.
        • Mederake M.
        • Bonzheim I.
        • et al.
        The pathological features of angioimmunoblastic T-cell lymphomas with IDH2(R172) mutations.
        Mod Pathol. 2019; 32: 1123-1134
        • Heavican T.B.
        • Bouska A.
        • Yu J.
        • et al.
        Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma.
        Blood. 2019; 133: 1664-1676
        • Ma H.
        • Davarifar A.
        • Amengual J.E.
        The Future of Combination Therapies for Peripheral T Cell Lymphoma (PTCL).
        Curr Hematol Malig Rep. 2018; 13: 13-24
        • Ghione P.
        • Faruque P.
        • Mehta-Shah N.
        • et al.
        T follicular helper phenotype predicts response to histone deacetylase inhibitors in relapsed/refractory peripheral T-cell lymphoma.
        Blood Adv. 2020; 4: 4640-4647
        • Iqbal J.
        • Wright G.
        • Wang C.
        • et al.
        Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma.
        Blood. 2014; 123: 2915-2923
        • Amador C.
        • Greiner T.C.
        • Heavican T.B.
        • et al.
        Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry.
        Blood. 2019; 134: 2159-2170
        • Watatani Y.
        • Sato Y.
        • Miyoshi H.
        • et al.
        Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling.
        Leukemia. 2019; 33: 2867-2883
        • Laginestra M.A.
        • Cascione L.
        • Motta G.
        • et al.
        Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified.
        Mod Pathol. 2020; 33: 179-187